分析 (1)當(dāng)邊FG恰好經(jīng)過(guò)點(diǎn)C時(shí),由∠CFB=60°,得BF=3-t,在Rt△CBF中,根據(jù)三角函數(shù)求得t的值;
(2)根據(jù)運(yùn)動(dòng)的時(shí)間為t不同的取值范圍,求等邊△EFG和矩形ABCD重疊部分的面積為S的值,當(dāng)0≤t<1時(shí),重疊部分是直角梯形,面積S等于梯形的面積,
當(dāng)1≤t<3時(shí),重疊部分是S梯形MKFE-S△QBF,當(dāng)3≤t<4時(shí),重疊部分是S梯形MKFE,當(dāng)4≤t<6時(shí),重疊部分是正三角形的面積;
(3)當(dāng)AH=AO=3時(shí),AM=$\frac{1}{2}$AH=$\frac{3}{2}$,在Rt△AME中,由cos∠MAE=$\frac{AM}{AE}$,即cos30°=$\frac{\frac{3}{2}}{AE}$,得AE=$\sqrt{3}$,即3-t=$\sqrt{3}$或t-3=$\sqrt{3}$,求出t=3-$\sqrt{3}$或t=3+$\sqrt{3}$;
當(dāng)AH=HO時(shí),∠HOA=∠HAO=30°,又因?yàn)椤螲EO=60°得到∠EHO=90°EO=2HE=2AE,再由AE+2AE=3,求出AE=1,即3-t=1或t-3=1,求出t=2或t=4;
當(dāng)OH=OA=時(shí)∠HOB=∠OAH=30°,所以∠HOB=60°=∠HEB,得到點(diǎn)E和點(diǎn)O重合,從而求出t的值.
解答 解:(1)當(dāng)?shù)冗叀鱁FG的邊FG恰好經(jīng)過(guò)點(diǎn)C時(shí),
∠CFB=∠GFE=60°,∠BCF=30°,
∵BF=3-t,BC=2$\sqrt{3}$,
∴tan∠BCF=$\frac{BF}{BC}$,
即tan30°=$\frac{3-t}{2\sqrt{3}}$,
解得t=1
∴當(dāng)?shù)冗叀鱁FG的邊FG恰好經(jīng)過(guò)點(diǎn)C時(shí),t=1;
(2)①如圖1,當(dāng)0≤t<1時(shí),作MN⊥AB于點(diǎn)N,
∵tan∠MEN=tan60°=$\frac{MN}{EN}$=$\frac{2\sqrt{3}}{EN}$,
∴EN=2,
∵BE=BO+0E=3+t,EN=2,
∴CM=BN=BE-EN=3+t-2=t+1,
∴S=$\frac{1}{2}$(CM+BE)×BC=$\frac{1}{2}$(t+1+3+t)×2$\sqrt{3}$=2$\sqrt{3}$t+4$\sqrt{3}$.
②如圖2,當(dāng)1≤t<3時(shí),
∵EF=OP=6,
∴GH=6×$\frac{\sqrt{3}}{2}$=3$\sqrt{3}$,
∵$\frac{MK}{EF}$=$\frac{GH-MN}{GH}$,
∴$\frac{MK}{6}$=$\frac{3\sqrt{3}-2\sqrt{3}}{3\sqrt{3}}$解得MK=2,
又∵BF=3-t,BQ=$\sqrt{3}$BF=$\sqrt{3}$(3-t),
∴S=S梯形MKFE-S△QBF,
=$\frac{1}{2}$(2+6)×2$\sqrt{3}$-$\frac{1}{2}$×(3-t)×$\sqrt{3}$×(3-t)
=-$\frac{\sqrt{3}}{2}$t2+3$\sqrt{3}$t+$\frac{7\sqrt{3}}{2}$.
③如圖3,當(dāng)3≤t<4時(shí)
∵M(jìn)N=2$\sqrt{3}$,EF=6-2(t-3)=12-2t,
∴GH=(12-2t)×$\frac{\sqrt{3}}{2}$=6$\sqrt{3}$-$\sqrt{3}$t,
∴$\frac{MK}{EF}=\frac{GH-MN}{GH}$,
∴MK=8-2t,
S=-4$\sqrt{3}$t+20$\sqrt{3}$;
④如圖4,當(dāng)4≤t<6時(shí),
∵EF=12-2t,
高為:EF•sin60°=$\frac{\sqrt{3}}{2}$EF
S=$\sqrt{3}$t2-12$\sqrt{3}$t+36$\sqrt{3}$;
(3)存在t,使△AOH是等腰三角形.
理由如下:在Rt△ABC中,tan∠CAB=$\frac{BC}{AB}$=$\frac{\sqrt{3}}{3}$,
∴∠CAB=30°,
又∵∠HEO=60°,
∴∠HAE=∠AHE=30°,
∴AE=HE=3-t或t-3
①如圖5,
當(dāng)AH=AO=3時(shí),過(guò)點(diǎn)E作EM⊥AH于M,
則AM=$\frac{1}{2}$AH=$\frac{3}{2}$,
在Rt△AME中,cos∠MAE=$\frac{AM}{AE}$,
即cos30°=$\frac{\frac{3}{2}}{AE}$,
∴AE=$\sqrt{3}$,即3-t=$\sqrt{3}$或t-3=$\sqrt{3}$,
∴t=3-$\sqrt{3}$或t=3+$\sqrt{3}$.
②如圖6,
當(dāng)HA=HO時(shí),
則∠HOA=∠HAO=30°
又∵∠HEO=60°,
∴∠EHO=90°,EO=2HE=2AE,
又∵AE+EO=3,
∴AE+2AE=3,AE=1,
即3-t=1或t-3=1,
∴t=2或t=4;
③如圖7,
當(dāng)OH=OA時(shí),
則∠OHA=∠OAH=30°
∴∠HOB=60°=∠HEB,
∴點(diǎn)E和點(diǎn)O重合,
∴AE=AO=3,
當(dāng)E剛開(kāi)始運(yùn)動(dòng)時(shí)3-t=3,
當(dāng)點(diǎn)E返回O時(shí)是:t-3=3,
即3-t=3或t-3=3,t=6(舍去)或t=0;
,綜上,可得存在t,使△AOH是等腰三角形,此時(shí)t=3-$\sqrt{3}$、3+$\sqrt{3}$、2、4或0.
點(diǎn)評(píng) 此題主要考查了 平行四邊形的性質(zhì)、平行四邊形的判定、矩形、矩形的性質(zhì)、矩形的判定、菱形、菱形的性質(zhì)、菱形的判定 等知識(shí),關(guān)鍵是根據(jù)特殊三角形的性質(zhì),分類(lèi)討論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年江蘇省東臺(tái)市第六教育聯(lián)盟七年級(jí)下學(xué)期第一次月考數(shù)學(xué)試卷 題型:填空題
一個(gè)等腰三角形的兩邊長(zhǎng)分別是3cm和7cm,它的周長(zhǎng)是____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 4.8 | C. | 5 | D. | 5.4 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com