精英家教網 > 初中數學 > 題目詳情

【題目】在正方形ABCD中,AB=8,點P在邊CD上,tanPBC=,點Q是在射線BP上的一個動點,過點QAB的平行線交射線AD于點M,點R在射線AD上,使RQ始終與直線BP垂直.

1)如圖1,當點R與點D重合時,求PQ的長;

2)如圖2,試探索: 的比值是否隨點Q的運動而發(fā)生變化?若有變化,請說明你的理由;若沒有變化,請求出它的比值;

3)如圖3,若點Q在線段BP上,設PQ=xRM=y,求y關于x的函數關系式,并寫出它的定義域.

【答案】(1);(2);(3;0x.

【解析】試題分析:(1)由正方形的性質及可求出BC=8,PC=6,由勾股定理可求出BP=10,再由∽△即可求出結論;

2由正方形的性質得∠A=ABC=C=90°,由MQAB得∠QMR=A,故∠QMR=C;由MQAB,而∠1+RQM=90°,ABP+PBC=90°,故,從而∽△.故可得出結論;

3)延長的延長線于點,通過證明,分別計算, ,從而可得出結論.

試題解析:1)由題意,得,

Rt中,

∴△∽△

2)答: 的比值隨點的運動沒有變化

理由如圖,

,

∴△∽△

,

的比值隨點的運動沒有變化,比值為

3)延長的延長線于點

,

,

,

它的定義域是

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】某校研究性學習小組在研究有關二次函數及其圖象性質的問題時,發(fā)現了兩個重要結論.一是發(fā)現拋物線y=ax2+2x+3a≠0),當實數a變化時,它的頂點都在某條直線上;二是發(fā)現當實數a變化時,若把拋物線y=ax2+2x+3的頂點的橫坐標減少,縱坐標增加,得到A點的坐標;若把頂點的橫坐標增加,縱坐標增加,得到B點的坐標,則AB兩點一定仍在拋物線y=ax2+2x+3上.

1)請你協(xié)助探求出當實數a變化時,拋物線y=ax2+2x+3的頂點所在直線的解析式;

2)問題(1)中的直線上有一個點不是該拋物線的頂點,你能找出它來嗎?并說明理由;

3)在他們第二個發(fā)現的啟發(fā)下,運用一般﹣一特殊﹣一般的思想,你還能發(fā)現什么?你能用數學語言將你的猜想表述出來嗎?你的猜想能成立嗎?若能成立請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中.直線y=﹣x+3與x軸交于點B,與y軸交于點C,拋物線y=ax2+bx+c經過B,C兩點,與x軸負半軸交于點A,連結AC,A(-1,0)

(1)求拋物線的解析式;

(2)點P(m,n)是拋物線上在第一象限內的一點,求四邊形OCPB面積S關于m的函數表達式及S的最大值;

(3)若M為拋物線的頂點,點Q在直線BC上,點N在直線BM上,Q,M,N三點構成以MN為底邊的等腰直角三角形,求點N的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知,如圖點P是△ABC的邊BC上的一動點,點E與點P關于直線AB成軸對稱,連接EPAB于點F,連接AP、EC相交于點O,連接AE.

1)判斷AEAP的數量關系,并說明理由.

2)在點P的運動過程中,當AEBC時,判斷APBP的數量關系,并說明理由.

3)若∠BAC=900,點P在運動過程中是否存在線段AP與線段EC互相平分的情況,若存在,請求出點P的位置;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖為某城市部分街道示意圖,四邊形ABCD為正方形,G在對角線BD,GECD,GFBC,AD=1 500 m,小敏行走的路線為BAGE,小聰行走的路線為BADEF.若小敏行走的路程為3 100 m,則小聰行走的路程為   m.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】兩個少年在綠茵場上游戲小紅從點A出發(fā)沿線段AB運動到點B小蘭從點C出發(fā),以相同的速度沿⊙O逆時針運動一周回到點C,兩人的運動路線如圖1所示,其中ACDB兩人同時開始運動,直到都停止運動時游戲結束,其間他們與點C的距離y與時間x(單位秒)的對應關系如圖2所示.則下列說法正確的是( 。

A. 小紅的運動路程比小蘭的長

B. 兩人分別在1.09秒和7.49秒的時刻相遇

C. 當小紅運動到點D的時候,小蘭已經經過了點D

D. 4.84秒時,兩人的距離正好等于⊙O的半徑

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】畫圖,探究:

1)一個正方體組合圖形的主視圖、左視圖(如圖1)所示.

①這個幾何體可能是(圖2)甲、乙中的   

②這個幾何體最多可由   個小正方體構成,請在圖3中畫出符合最多情況的一個俯視圖.

2)如圖,已知一平面內的四個點A、B、CD,根據要求用直尺畫圖.

①畫線段AB,射線AD;

②找一點M,使M點即在射線AD上,又在直線BC上;

③找一點N,使NAB、C、D四個點的距離和最短.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線分別與x軸、y軸交于兩點,與直線交于點C4,2).

1)點A坐標為( , ),B為( );

2)在線段上有一點E,過點Ey軸的平行線交直線于點F,設點E的橫坐標為m,當m為何值時,四邊形是平行四邊形;

3)若點Px軸上一點,則在平面直角坐標系中是否存在一點Q,使得四個點能構成一個菱形.若存在,求出所有符合條件的Q點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】尺規(guī)作圖,不寫作法,但要求保留作圖痕跡.

1)已知:線段a和∠α,如圖.求作:△ABC,使得AB=a,∠ABC=∠α.∠BAC=2α

2)在(1)的條件下,若∠ABC=360,求∠ACB的度數.

查看答案和解析>>

同步練習冊答案