【題目】如圖,直線ABCD相交于點(diǎn)O,OE,OF,OG分別是∠AOC,∠BOD,∠BOC的平分線,以下說(shuō)法不正確的是( 。

A.DOF與∠COG互為余角

B.COG與∠AOG互為補(bǔ)角

C.射線OE,OF不一定在同一條直線上

D.射線OE,OG互相垂直

【答案】C

【解析】

首先根據(jù)角平分線的性質(zhì)得出∠COEAOC,∠DOF=∠BOFBOD,進(jìn)而得出∠COE=∠BOF,∠COG=∠BOG,可判定∠DOF與∠COG互為余角;射線OE,OG互相垂直;然后根據(jù)∠AOG+BOG180°,得出∠AOG+COG180°,可判定∠COG與∠AOG互為補(bǔ)角,又由∠EOG+FOG180°,得出射線OE,OF一定在同一條直線上,即可得解.

∵∠AOC=∠BOD

OE,OF分別是∠AOC,∠BOD的平分線,

∴∠COEAOC,∠DOF=∠BOFBOD,

∴∠COE=∠BOF,

OGBOC的平分線,

∴∠COG=∠BOG

∴∠COE+COG=∠BOF+BOG×180°90°,

∴∠EOG=∠FOG90°,

∴∠DOF與∠COG互為余角;故A正確;射線OE,OG互相垂直;故D正確;

∵∠AOG+BOG180°,

∴∠AOG+COG180°

∴∠COG與∠AOG互為補(bǔ)角,故B正確;

∵∠EOG+FOG180°

∴射線OE,OF一定在同一條直線上,故C錯(cuò)誤.

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖 所示, 20 m 的籬笆(細(xì)線部分),兩面靠墻圍成矩形的苗圃.

(1)設(shè)矩形的一邊長(zhǎng)為x(m),面積為y(m 2 ),求y關(guān)于x的函數(shù)表達(dá)式;

(2)求當(dāng)x8、9、10、11、12時(shí)y的值,并觀察這幾種情況下,哪種情況面積最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的口袋里裝有只有顏色不同的黑、白兩種顏色的球共20只,某學(xué)習(xí)小組做摸球?qū)嶒?yàn),將球攪勻后從中隨機(jī)摸出一個(gè)球記下顏色,再把它放回袋中,不斷重復(fù)上述過(guò)程,下表是活動(dòng)進(jìn)行中的一組統(tǒng)計(jì)數(shù)據(jù):

摸球的次數(shù)n

100

150

200

500

800

1000

摸到白球的次數(shù)m

58

96

116

295

484

601

摸到白球的頻率

0.64

0.58

0.605

0.601

1)請(qǐng)將表中的數(shù)據(jù)補(bǔ)充完整,

2)請(qǐng)估計(jì):當(dāng)n很大時(shí),摸到白球的概率約是   .(精確到0.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果關(guān)于的分式方程有負(fù)分?jǐn)?shù)解,且關(guān)于的不等式組的解集為,那么符合條件的所有整數(shù)的積是( )

A. B. 0 C. 3 D. 9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了傳承中華優(yōu)秀的傳統(tǒng)文化,市教育局決定開展經(jīng)典誦讀進(jìn)校園活動(dòng),某校園團(tuán)委組織八年級(jí)100名學(xué)生進(jìn)行經(jīng)典誦讀選拔賽,賽后對(duì)全體參賽學(xué)生的成績(jī)進(jìn)行整理,得到下列不完整的統(tǒng)計(jì)圖表:

請(qǐng)根據(jù)所給信息,解答以下問(wèn)題:

(1)表中 ;

(2)請(qǐng)計(jì)算扇形統(tǒng)計(jì)圖中組對(duì)應(yīng)的圓心角的度數(shù);

(3)已知有四名同學(xué)均取得98分的最好成績(jī),其中包括來(lái)自同一班級(jí)的甲、乙兩名同學(xué),學(xué)校將從這四名同學(xué)中隨機(jī)選出兩名參加市級(jí)比賽,請(qǐng)用列舉法或樹狀圖法求甲、乙兩名同學(xué)都被選中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y1kx+2與反比例函數(shù)y2(x0)相交于點(diǎn)A,且當(dāng)x<﹣1時(shí),y1y2,當(dāng)﹣1x0時(shí),y1y2

(1)求出y1的解析式;

(2)若直線y2x+bx軸交于點(diǎn)B(30),與y1交于點(diǎn)C,求出△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于數(shù)據(jù):80,88,85,85,83,83,84.下列說(shuō)法中錯(cuò)誤的有( )

A、這組數(shù)據(jù)的平均數(shù)是84;

B、這組數(shù)據(jù)的眾數(shù)是85;

C、這組數(shù)據(jù)的中位數(shù)是84;

D、這組數(shù)據(jù)的方差是36.

A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中有一直角三角形AOB,O為坐標(biāo)原點(diǎn),OA=1,tan∠BAO=3,將此三角形繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到△DOC,拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)A、BC

1)求拋物線的解析式;

2)若點(diǎn)P是第二象限內(nèi)拋物線上的動(dòng)點(diǎn),其橫坐標(biāo)為t,

設(shè)拋物線對(duì)稱軸lx軸交于一點(diǎn)E,連接PE,交CDF,求出當(dāng)△CEF△COD相似時(shí),點(diǎn)P的坐標(biāo);

是否存在一點(diǎn)P,使△PCD的面積最大?若存在,求出△PCD的面積的最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列等式變形不一定正確的是( .

A. x=y, x-5=y-5B. x=y, ax=ay

C. x=y, 3-2x=3-2yD. x=y,

查看答案和解析>>

同步練習(xí)冊(cè)答案