【題目】下列結論:w
①若a+b+c=0,且abc≠0,則方程a+bx+c=0的解是x=1;
②若a(x﹣1)=b(x﹣1)有唯一的解,則a≠b;
③若b=2a,則關于x的方程ax+b=0(a≠0)的解為x=﹣;
④若a+b+c=1,且a≠0,則x=1一定是方程ax+b+c=1的解;
其中結論正確個數有( )
A.4個 B.3個 C.2個 D.1個
科目:初中數學 來源: 題型:
【題目】、兩地相距千米,一列慢車從地開出,每小時行駛千米,一列快車從地開出,每小時行駛千米,兩車同時開出.
若相向而行,出發(fā)后多少小時相遇?
若相背而行,多少小時后,兩車相距千米
若兩車同向而行,快車在慢車后面,多少小時后,快車追上慢車?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩家體育用品商店出售同樣的乒乓球拍和乒乓球,乒乓球拍每副定價20元,乒乓球每盒定價5元,F兩家商店搞促銷活動,甲店的優(yōu)惠辦法是:每買一副乒乓球拍贈一盒乒乓球;乙店的優(yōu)惠辦法是:按定價的9折出售。某班需購買乒乓球拍4副,乒乓球若干盒(不少于4盒).
(1)用代數式表示(所填式子需化簡):
當購買乒乓球的盒數為x盒時,在甲店購買需付款 元;在乙店購買需付款 元。
(2)當購買乒乓球盒數為10盒時,若只能選擇一家商店去購買,到哪家商店購買比較合算?并說明理由。
(3)當購買乒乓球盒數為10盒時,若不限制購買的商店,請你給出一種更為省錢的購買方案,并求出此時需付款多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】用四個長為m,寬為n的相同長方形按如圖方式拼成一個正方形.
(1).請用兩種不同的方法表示圖中陰影部分的面積.
方法①: ;
方法②: .
(2).由 (1)可得出2, ,4mn這三個代數式之間的一個等量關系為: .
(3)利用(2)中得到的公式解決問題:已知2a+b=6,ab=4,試求的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,∠A=∠B,AE=BE,點D在AC邊上,∠1=∠2,AE和BD相交于點O.
(1)求證:△AEC≌△BED;
(2)若∠1=42°,求∠BDE的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了鼓勵居民節(jié)約用水,某市自來水公司對每戶月用水量進行計費,每戶每月用水量在規(guī)定噸數以下的收費標準相同;規(guī)定噸數以上的超過部分收費標準相同,以下是小明家月份用水量和交費情況:
月份 | |||||
用水量(噸) | |||||
費用(元) |
根據表格中提供的信息,回答以下問題:
求出規(guī)定噸數和兩種收費標準;
若小明家月份用水噸,則應繳多少元?
若小明家月份繳水費元,則月份用水多少噸?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,分別以AC,BC為邊作等邊△ACD和等邊△BCE.設△ACD、△BCE、△ABC的面積分別是S1、S2、S3 , 現有如下結論:
①S1:S2=AC2:BC2;
②連接AE,BD,則△BCD≌△ECA;
③若AC⊥BC,則S1S2= S32 .
其中結論正確的序號是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC的角平分線AD交BC于E,交△ABC的外接圓⊙O于D.
(1)求證:△ABE∽△ADC;
(2)請連接BD,OB,OC,OD,且OD交BC于點F,若點F恰好是OD的中點.求證:四邊形OBDC是菱形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在等邊△ABC中,D是邊AC上一點,連接BD,將△BCD繞點B逆時針旋轉60°,得到△BAE,連接ED,若BC=5,BD=4.則下列四個結論:①AE∥BC;②∠ADE=∠BDC;③△BDE是等邊三角形;④△AED的周長是9.其中正確的結論是(把你認為正確結論的序號都填上.)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com