【題目】如圖,P是等邊三角形ABC內(nèi)一點,將線段BP繞點B逆時針旋轉(zhuǎn)60°得到線段BQ,連接AQ.若PA=4,PB=5,PC=3,則四邊形APBQ的面積為_______.
【答案】
【解析】
由旋轉(zhuǎn)的性質(zhì)可得△BPQ是等邊三角形,由全等三角形的判定可得△ABQ≌△CBP(SAS),由勾股定理的逆定理可得△APQ是直角三角形,求四邊形的面積轉(zhuǎn)化為求兩個特殊三角形的面積即可.
解:連接PQ,
由旋轉(zhuǎn)的性質(zhì)可得,BP=BQ,
又∵∠PBQ=60°,
∴△BPQ是等邊三角形,
∴PQ=BP,
在等邊三角形ABC中,∠CBA=60°,AB=BC,
∴∠ABQ=60°-∠ABP
∠CBP=60°-∠ABP
∴∠ABQ=∠CBP
在△ABQ與△CBP中
,
∴△ABQ≌△CBP(SAS),
∴AQ=PC,
又∵PA=4,PB=5,PC=3,
∴PQ=BP=5,PC=AQ=3,
在△APQ中,因為,25=16+9,
∴由勾股定理的逆定理可知△APQ是直角三角形,
∴,
故答案為:
科目:初中數(shù)學(xué) 來源: 題型:
【題目】張老師在講解復(fù)習(xí)《圓》的內(nèi)容時,用投影儀屏幕展示出如下內(nèi)容:
如圖,內(nèi)接于,直徑的長為2,過點的切線交的延長線于點.
張老師讓同學(xué)們添加條件后,編制一道題目,并按要求完成下列填空.
(1)在屏幕內(nèi)容中添加條件,則的長為______.
(2)以下是小明、小聰?shù)膶υ挘?/span>
小明:我加的條件是,就可以求出的長
小聰:你這樣太簡單了,我加的是,連結(jié),就可以證明與全等.
參考上面對話,在屏幕內(nèi)容中添加條件,編制一道題目(此題目不解答,可以添線、添字母).______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)(為常數(shù),且)的圖像與反比例函數(shù)的圖像交于,兩點.
(1)求一次函數(shù)的表達(dá)式;
(2)若將直線向下平移個單位長度后與反比例函數(shù)的圖像有且只有一個公共點,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系xOy中,已知△ABC,∠ABC=90°,頂點A在第一象限,B,C在x軸的正半軸上(C在B的右側(cè)),BC=2,AB=2,△ADC與△ABC關(guān)于AC所在的直線對稱.
(1)當(dāng)OB=2時,求點D的坐標(biāo);
(2)若點A和點D在同一個反比例函數(shù)的圖象上,求OB的長;
(3)如圖2,將第(2)題中的四邊形ABCD向右平移,記平移后的四邊形為A1B1C1D1,過點D1的反比例函數(shù)y=(k≠0)的圖象與BA的延長線交于點P.問:在平移過程中,是否存在這樣的k,使得以點P,A1,D為頂點的三角形是直角三角形?若存在,請直接寫出所有符合題意的k的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖①是小明在健身器材上進(jìn)行仰臥起坐鍛煉時的情景,圖②是小明鍛煉時上半身由ON位置運動到與地面垂直的OM位置時的示意圖.已知AC=0.66米,BD=0.26米,α=20°.(參考數(shù)據(jù):sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)
(1)求AB的長(精確到0.01米);
(2)若測得ON=0.8米,試計算小明頭頂由N點運動到M點的路徑的長度.(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=﹣x2+bx+c交x軸于點A(- 4,0)和點B,交y軸于點C(0,4).
(1)求拋物線的函數(shù)表達(dá)式;
(2)如圖2,設(shè)點Q是線段AC上的一動點,作DQ⊥x軸,交拋物線于點D,當(dāng)△ADC面積有最大值時,在拋物線對稱軸上找一點M,使DM+AM的值最小,求出此時M的坐標(biāo);
(3)點Q在直線AC上的運動過程中,是否存在點Q,使△BQC為等腰三角形?若存在,直接寫出點Q的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,點P是邊AC上一點,過點P作PQ∥AB交BC于點Q,D為線段PQ的中點,BD平分∠ABC,以下四個結(jié)論①△BQD是等腰三角形;②BQ=DP;③PA=QP;④=(1+)2;其中正確的結(jié)論的個數(shù)( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某駐村扶貧小組實施產(chǎn)業(yè)扶貧,幫助貧困農(nóng)戶進(jìn)行西瓜種植和銷售.已知西瓜的成本為6元/千克,規(guī)定銷售單價不低于成本,又不高于成本的兩倍.經(jīng)過市場調(diào)查發(fā)現(xiàn),某天西瓜的銷售量y(千克)與銷售單價x(元/千克)的函數(shù)關(guān)系如下圖所示:
(1)求y與x的函數(shù)解析式(也稱關(guān)系式);
(2)求這一天銷售西瓜獲得的利潤的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘船由A港沿北偏東65°方向航行km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏東20°方向.
求:(1)∠C的度數(shù);
(2)A,C兩港之間的距離為多少km.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com