【題目】如圖,邊長(zhǎng)為8的正方形OABC的兩邊在坐標(biāo)軸上,以點(diǎn)C為頂點(diǎn)的拋物線(xiàn)經(jīng)過(guò)點(diǎn)A,點(diǎn)P是拋物線(xiàn)上點(diǎn)A,C間的一個(gè)動(dòng)點(diǎn)(含端點(diǎn)),過(guò)點(diǎn)P作PF⊥BC于點(diǎn)F,點(diǎn)D,E的坐標(biāo)分別為(0,6),(﹣4,0),連接PD,PE,DE.
(1)求拋物線(xiàn)的解析式;
(2)若d=|PD﹣PF|.請(qǐng)說(shuō)明d是否為定值?若是定值,請(qǐng)求出其大。蝗舨皇嵌ㄖ,請(qǐng)說(shuō)明其變化規(guī)律?
(3)求出△PDE周長(zhǎng)取值范圍.
【答案】(1);(2)d是定值,d=|PD﹣PF|的定值為2;(3).
【解析】
(1)利用待定系數(shù)法求出拋物線(xiàn)解析式即可;
(2)首先表示出P,F點(diǎn)坐標(biāo),再利用兩點(diǎn)之間距離公式得出PD,PF的長(zhǎng),進(jìn)而求出即可;
(3)過(guò)E作EF⊥x軸,交拋物線(xiàn)于點(diǎn)P,求得C△PDE=ED+PE+PD=ED+PE+PF+2=ED+2+(PE+PF),當(dāng)P、E、F三點(diǎn)共線(xiàn)時(shí),PE+PF最;當(dāng)P與A重合時(shí),PE+PF最大;即可解答.
(1)∵邊長(zhǎng)為8的正方形OABC的兩邊在坐標(biāo)軸上,以點(diǎn)C為頂點(diǎn)的拋物線(xiàn)經(jīng)過(guò)點(diǎn)A,
∴C(0,8),A(﹣8,0),
設(shè)拋物線(xiàn)解析式為:y=ax2+c,
則 ,
解得:
∴拋物線(xiàn)解析式為: .
(2)設(shè)P(x,),則F(x,8),
則PF=8-()=.
PD2=x2+[6﹣(﹣+8)]2=
∴,
∴
∴d=|PD﹣PF|為定值2;
(3)如圖,過(guò)點(diǎn)E作EF⊥x軸,交拋物線(xiàn)于點(diǎn)P,
由d=|PD﹣PF|為定值2,
得C△PDE=ED+PE+PD=ED+PE+PF+2=ED+2+(PE+PF),
又∵D(0,6),E(﹣4,0)
∴
∴
當(dāng)PE和PF在同一直線(xiàn)時(shí)PE+PF最小,
得C△PDE最小值 .
設(shè)P為拋物線(xiàn)AC上異于點(diǎn)A的任意一點(diǎn),過(guò)P作PM∥x軸,交AB于點(diǎn)M,連接ME,如圖2.
由于E是AO的中點(diǎn),易證得ME≥PE(當(dāng)點(diǎn)P接近點(diǎn)A時(shí),在△PME中,顯然∠MPE是鈍角,故ME≥PE,與A重合時(shí),等號(hào)成立),而ME≤AE+AM,
所以PE≤AE+AM.
所以當(dāng)P與A重合時(shí),PE+PF最大,
AE=8﹣4=4, .
得C△PDE最大值=.
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的圖象如圖所示,下列結(jié)論:①,②,③,④,其中正確結(jié)論的個(gè)數(shù)為( )
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在矩形ABCD中,E為邊BC上的一點(diǎn),AE⊥DE,AB=12,BE=16,F(xiàn)為線(xiàn)段BE上一點(diǎn),EF=7,連接AF.如圖1,現(xiàn)有一張硬紙片△GMN,∠NGM=900,NG=6,MG=8,斜邊MN與邊BC在同一直線(xiàn)上,點(diǎn)N與點(diǎn)E重合,點(diǎn)G在線(xiàn)段DE上.如圖2,△GMN從圖1的位置出發(fā),以每秒1個(gè)單位的速度沿EB向點(diǎn)B勻速移動(dòng),同時(shí),點(diǎn)P從A點(diǎn)出發(fā),以每秒1個(gè)單位的速度沿AD向點(diǎn)D勻速移動(dòng),點(diǎn)Q為直線(xiàn)GN與線(xiàn)段AE的交點(diǎn),連接PQ.當(dāng)點(diǎn)N到達(dá)終點(diǎn)B時(shí),△GMNP和點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,解答問(wèn)題:
(1)在整個(gè)運(yùn)動(dòng)過(guò)程中,當(dāng)點(diǎn)G在線(xiàn)段AE上時(shí),求t的值;
(2)在整個(gè)運(yùn)動(dòng)過(guò)程中,是否存在點(diǎn)P,使△APQ是等腰三角形,若存在,求出t的值;若不存在,說(shuō)明理由;
(3)在整個(gè)運(yùn)動(dòng)過(guò)程中,設(shè)△GMN與△AEF重疊部分的面積為S,請(qǐng)直接寫(xiě)出S與t的函數(shù)關(guān)系式以及自變量t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中考臨近,某商家抓住商機(jī),準(zhǔn)備了一批考試專(zhuān)用筆及文具袋.去年五月份.筆的售價(jià)比文具袋的售價(jià)少2元,筆和文具袋的銷(xiāo)售量都為100,結(jié)果筆與文具袋的總銷(xiāo)售額為1400元.
(1)求去年五月份筆和文具袋的售價(jià);
(2)受市場(chǎng)影響,該商家估計(jì)今年五月份購(gòu)買(mǎi)筆的人會(huì)減少,于是降低了筆的售價(jià),結(jié)果發(fā)現(xiàn)五月份筆的銷(xiāo)售量有提升.經(jīng)統(tǒng)計(jì)發(fā)現(xiàn)與去年五月份相比文具袋的售價(jià)每降價(jià)1元,文具袋的銷(xiāo)售量就增加10件,同時(shí)筆的銷(xiāo)售量就增加20件,且筆的售價(jià)不變.如果今年五月份筆和文具盒的總銷(xiāo)售額比去年五月份的筆和文具盒的總銷(xiāo)售額多90元,求今年五月份文具袋的售價(jià).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】八年級(jí)一班開(kāi)展了“讀一本好書(shū)”的活動(dòng),班委會(huì)對(duì)學(xué)生閱讀書(shū)籍的情況進(jìn)行了問(wèn)卷調(diào)查,問(wèn)卷設(shè)置了“小說(shuō)”、“戲劇”、“散文”、“其他”四個(gè)類(lèi)別,每位同學(xué)僅選一項(xiàng),根據(jù)調(diào)查結(jié)果繪制了不完整的頻數(shù)分布表和扇形統(tǒng)計(jì)圖.根據(jù)圖表提供的信息,回答下列問(wèn)題:
類(lèi)別 | 頻數(shù)(人數(shù)) | 頻率 |
小說(shuō) | 0.5 | |
戲劇 | 4 | |
散文 | 10 | 0.25 |
其他 | 6 | |
合計(jì) | m | 1 |
(1)計(jì)算m= ;
(2)在扇形統(tǒng)計(jì)圖中,“其他”類(lèi)所占的百分比為 ;
(3)在調(diào)查問(wèn)卷中,甲、乙、丙、丁四位同學(xué)選擇了“戲劇”類(lèi),現(xiàn)從中任意選出2名同學(xué)參加學(xué)校的戲劇社團(tuán),請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法,求選取的2人恰好是乙和丙的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1是一個(gè)小朋友玩“滾鐵環(huán)”的游戲,鐵環(huán)是圓形的,鐵環(huán)向前滾動(dòng)時(shí),鐵環(huán)鉤保持與鐵環(huán)相切.將這個(gè)游戲抽象為數(shù)學(xué)問(wèn)題,如圖2.已知鐵環(huán)的半徑為25 cm,設(shè)鐵環(huán)中心為O,鐵環(huán)鉤與鐵環(huán)相切點(diǎn)為M,鐵環(huán)與地面接觸點(diǎn)為A,∠MOA=α,且sinα=.
(1)求點(diǎn)M離地面AC的高度BM;
(2)設(shè)人站立點(diǎn)C與點(diǎn)A的水平距離AC=55 cm,求鐵環(huán)鉤MF的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平行四邊形ABCD中,對(duì)角線(xiàn)BD⊥AB,以BD為對(duì)稱(chēng)軸將△ABD翻折,點(diǎn)A的對(duì)應(yīng)點(diǎn)為A′,連接A′C,得到圖2.
推理證明
(1)求證:四邊形A′BDC是矩形;
實(shí)踐操作
(2)在圖1中將△ABD或△BDC進(jìn)行平移、旋轉(zhuǎn)或軸對(duì)稱(chēng)變換,重新構(gòu)造一個(gè)特殊四邊形.
要求:①畫(huà)出圖形,標(biāo)明字母;②寫(xiě)出構(gòu)圖過(guò)程及構(gòu)造的特殊四邊形的名稱(chēng).(不要求證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(閱讀理解)
借助圖形的直觀(guān)性,我們可以直接得到一些有規(guī)律的算式的結(jié)果,比如:由圖①,通過(guò)對(duì)小黑點(diǎn)的計(jì)數(shù),我們可以得到1+2+3+…+n=n(n+1);由圖②,通過(guò)對(duì)小圓圈的計(jì)數(shù),我們可以得到1+3+5+…+(2n﹣1)=n2.
那么13+23+33+…+n3結(jié)果等于多少呢?
如圖③,AB是正方形ABCD的一邊,BB′=n,B′B″=n﹣1,B″B′′′=n﹣2,……,顯然AB=1+2+3+…+n= n(n+1),分別以AB′、AB″、AB′′′、…為邊作正方形,將正方形ABCD分割成塊,面積分別記為Sn、Sn﹣1、Sn﹣2、…、S1.
(規(guī)律探究)
結(jié)合圖形,可以得到Sn=2BB′×BC﹣BB′2= ,
同理有Sn﹣1= ,Sn﹣2= ,…,S1=13.
所以13+23+33+…+n3=S四邊形ABCD= .
(解決問(wèn)題)
根據(jù)以上發(fā)現(xiàn),計(jì)算的結(jié)果為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了推動(dòng)課堂教學(xué)改革,打造高效課堂,配合我市“兩型課堂”的課題研究,蓮城中學(xué)對(duì)八年級(jí)部分學(xué)生就一期來(lái)“分組合作學(xué)習(xí)”方式的支持程度進(jìn)行調(diào)查,統(tǒng)計(jì)情況如圖.試根據(jù)圖中提供的信息,
回答下列問(wèn)題:
(1)求本次被調(diào)查的八年級(jí)學(xué)生的人數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)若該校八年級(jí)學(xué)生共有180人,請(qǐng)你估計(jì)該校八年級(jí)有多少名學(xué)生支持“分組合作學(xué)習(xí)”方式(含“非常喜歡”和“喜歡”兩種情況的學(xué)生).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com