13.計算(-3)2003÷(-3)2005的結果為( 。
A.9B.-9C.$\frac{1}{9\;}$D.$-\frac{1}{9\;}$

分析 直接利用同底數(shù)冪的除法運算法則將原式變形,進而求出答案.

解答 解:(-3)2003÷(-3)2005
=(-3)-2
=$\frac{1}{9}$.
故選:C.

點評 此題主要考查了同底數(shù)冪的除法運算以及負整數(shù)冪的性質等知識,掌握相關運算法則是解題關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

3.已知:OP平分∠AOB,∠DCE的頂點C在射線OP上,射線CD交射線OA于F,射線CE交射線OB于G.
(1)如圖①,若CD⊥OA,CE⊥OB,請直接寫出線段CF與CG的數(shù)量關系:CF=CG;
(2)如圖②,若∠AOB=120°,∠DCE=∠AOC,試判斷線段CF與線段CG的數(shù)量關系并加以證明;
(3)若∠AOB=α,當∠DCE滿足什么條件時,你在(2)中得到的結論仍然成立,請直接寫出∠DCE滿足的條件.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

4.二次函數(shù)y=ax2+bx+c(a≠0)的圖象與反比例函數(shù)y=$\frac{k}{x}$(k≠0)的圖象相交(如圖),則不等式ax2+bx+c>$\frac{k}{x}$的解集是( 。
A.1<x<4或x<-2B.1<x<4或-2<x<0
C.0<x<1或x>4或-2<x<0D.-2<x<1或x>-4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

1.在如圖所示的直角坐標系中,解答下列問題:
(1)分別寫出點A、B的坐標;
(2)將△ABC繞點A順時針旋轉90°,畫出旋轉后的△AB1C1;
(3)求線段BB1所在直線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

8.如圖是甲、乙兩家商店銷售同一種產品的銷售價y(元)與銷售量x(件)之間的函數(shù)圖象,下列說法:
①買2件時甲、乙兩家售價一樣;
②買1件時選乙家的產品合算;
③買3件時選甲家的產品合算;
④買1件時,售價約為3元.
其中正確的說法是( 。
A.①②B.②③C.①②④D.①②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

18.如圖,平行四邊形ABCD中,∠B=60°,AB=8cm,AD=10cm,點P在邊BC上從B向C運動,點Q在邊DA上從D向A運動,如果P,Q運動的速度都為每秒1cm,那么當運動時間t=7秒時,四邊形ABPQ是直角梯形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

5.在△ABC中,D、E、F分別為BC、AB、AC上的點.
(1)如圖1,若EF∥BC、DF∥AB,連CE、AD分別交DF、EF于N、M,且E為AB的中點,求證:EM=MF;
(2)如圖2,在(1)中,若E不是AB的中點,請寫出與MN平行的直線,并證明;
(3)若BD=DC,∠B=90°,且AE:AB:BC=1:3:2$\sqrt{3}$,AD與CE相交于點Q,直接寫出tan∠CQD的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

2.碼頭工人每天往一艘輪船上裝載貨物,裝載速度y(噸/天)與裝完貨物所需時間x(天)之間的函數(shù)關系如圖.
(1)求y與x之間的函數(shù)表達式;
(2)由于遇到緊急情況,要求船上的貨物不超過5天卸貨完畢,那么平均每天至少要卸多少噸貨物?
(3)若碼頭原有工人10名,且每名工人每天的裝卸量相同,裝載完畢恰好用了8天時間,在(2)的條件下,至少需要增加多少名工人才能完成任務?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

3.如圖,在正方形ABCD中,點M,N分別是BC,CD邊上的點,連接AM,BN,若BM=CN.
(1)求證:AM⊥BN;
(2)將線段AM繞M順時針旋轉90°得到線段ME,連接NE,試說明:四邊形BMEN是平行四邊形;
(3)將△ABM繞A逆時針旋轉90°得到△ADF,連接EF,當$\frac{BM}{BC}$=$\frac{1}{n}$時,請求出$\frac{{S}_{四邊形ABCD}}{{S}_{四邊形AMEF}}$的值.

查看答案和解析>>

同步練習冊答案