分析 根據(jù)平行四邊形的性質得出AB=CD,BC=AD,∠ABC=∠ADC,根據(jù)等邊三角形的性質得出DC=DF,BC=BE,∠EBC=∠CDF=60°,求出AB=DF,BE=DA,∠ABE=∠FDA,根據(jù)SAS推出△ABE≌△FDA即可.
解答 證明:∵四邊形ABCD是平行四邊形,
∴AB=CD,BC=AD,∠ABC=∠ADC,
∵△BCE和△CDF為等邊三角形,
∴DC=DF,BC=BE,∠EBC=∠CDF=60°,
∴AB=DF,BE=DA,∠ABE=∠FDA,
在△ABE和△FDA中
$\left\{\begin{array}{l}{AB=DF}\\{∠ABE=∠FDA}\\{BE=AD}\end{array}\right.$
∴△ABE≌△FDA(SAS),
∴AE=AF.
點評 本題考查了平行四邊形的性質,全等三角形的性質和判定,等邊三角形的性質的應用,能綜合運用定理進行推理是解此題的關鍵.
科目:初中數(shù)學 來源: 題型:選擇題
A. | π | B. | 2π | C. | 3π | D. | 4π |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
A. | y=-x+2 | B. | y=-2x-2 | C. | y=2x+2 | D. | y=-2x+2 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com