【題目】如圖,△ABC三個頂點的坐標(biāo)分別為A(1,1),B(4,2),C(3,4).
(1)①請畫出△ABC向左平移5個單位長度后得到的△A1B1C1;
②請畫出△ABC關(guān)于原點對稱的△A2B2C2;
(2)在x軸上求作一點P,使△PAB的周長最小,請畫出△PAB,并直接寫出P的坐標(biāo).
【答案】
(1)解:①△A1B1C1如圖所示
②△A2B2C2如圖所示;
(2)解:△PAB如圖所示,P(2,0).
【解析】(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點A、B、C平移后的對應(yīng)點A1、B1、C1的位置,然后順次連接即可;根據(jù)網(wǎng)格結(jié)構(gòu)找出點A、B、C關(guān)于原點的對稱點A2、B2、C2的位置,然后順次連接即可;(2)找出點A關(guān)于x軸的對稱點A′,連接A′B與x軸相交于一點,根據(jù)軸對稱確定最短路線問題,交點即為所求的點P的位置,然后連接AP、BP并根據(jù)圖象寫出點P的坐標(biāo)即可.
【考點精析】關(guān)于本題考查的軸對稱-最短路線問題,需要了解已知起點結(jié)點,求最短路徑;與確定起點相反,已知終點結(jié)點,求最短路徑;已知起點和終點,求兩結(jié)點之間的最短路徑;求圖中所有最短路徑才能得出正確答案.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=13厘米,BC=10厘米,AD⊥BC于點D,動點P從點A出發(fā)以每秒1厘米的速度在線段AD上向終點D運動.設(shè)動點運動時間為t秒.
(1)求AD的長;
(2)當(dāng)△PDC的面積為15平方厘米時,求t的值;
(3)動點M從點C出發(fā)以每秒2厘米的速度在射線CB上運動.點M與點P同時出發(fā),且當(dāng)點P運動到終點D時,點M也停止運動.是否存在t,使得S△PMD= S△ABC?若存在,請求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4cm,BC=3cm,動點P從點A出發(fā),沿AB以1cm/s的速度向終點B勻速運動,同時點Q從點B出發(fā),沿B→C→D以1cm/s的速度向終點D勻速運動,當(dāng)兩個點中有一個到達(dá)終點后,另一個點也隨之停止.連接PQ,設(shè)點P的運動時間為x(s),PQ2=y(cm2).
(1)當(dāng)點Q在邊CD上,且PQ=3時,求x的值;
(2)求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)直接寫出y隨x增大而增大時自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中每個小正方形的邊長都是1個單位長度,Rt△ABC的三個頂點A(﹣2,2),B(0,5),C(0,2).
(1)將△ABC以點C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,得到△A1B1C,請畫出△A1B1C的圖形.
(2)平移△ABC,使點A的對應(yīng)點A2坐標(biāo)為(﹣2,﹣6),請畫出平移后對應(yīng)的△A2B2C2的圖形.
(3)若將△A1B1C繞某一點旋轉(zhuǎn)可得到△A2B2C2 , 請直接寫出旋轉(zhuǎn)中心的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=12cm,且,BC=10cm,點D為AB的中點.如果點P在線段BC上以2cm/s的速度由點B向C點運動,同時,點Q在線段AC上由點A向C點以4cm/s的速度運動.
(1)若點P、Q兩點分別從B、A兩點同時出發(fā),經(jīng)過2秒后,△BPD與△CQP是否全等,請說明理由;
(2)若點P、Q兩點分別從B、A兩點同時出發(fā),△CPQ的周長為18cm,問:經(jīng)過幾秒后,△CPQ是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的分式方程.
(1)若方程的增根為x=2,求a的值;
(2)若方程有增根,求a的值;
(3)若方程無解,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“文博會”期間,某公司展銷如圖所示的長方形工藝品,該工藝品長60cm,寬40cm,中間鑲有寬度相同的三條絲綢花邊.
(1)若絲綢花邊的面積為650cm2 , 求絲綢花邊的寬度;
(2)已知該工藝品的成本是40元/件,如果以單價100元/件銷售,那么每天可售出200件,另每天所需支付的各種費用2000元,根據(jù)銷售經(jīng)驗,如果將銷售單價降低1元,每天可多售出20件,同時,為了完成銷售任務(wù),該公司每天至少要銷售800件,那么該公司應(yīng)該把銷售單價定為多少元,才能使每天所獲銷售利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)觀察推理:如圖1,△ABC中,∠ACB=90°,AC=BC,直線l過點C,點A、B在直線l同側(cè),BD⊥l,AE⊥l,垂足分別為D、E.求證:△AEC≌△CDB;
(2)類比探究:如圖2,Rt△ABC中,∠ACB=90°,AC=6,將斜邊AB繞點A逆時針旋轉(zhuǎn)90°至AB′,連接B′C,求△AB′C的面積.
(3)拓展提升:如圖3,等邊△EBC中,EC=BC=4cm,點O在BC上,且OC=3cm,動點P從點E沿射線EC以2cm/s速度運動,連結(jié)OP,將線段OP繞點O逆時針旋轉(zhuǎn)120°得到線段OF.要使點F恰好落在射線EB上,求點P運動的時間ts.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,對稱軸為直線x=﹣1,與x軸的一個交點為(1,0),與y軸的交點為(0,3),則方程ax2+bx+c=0(a≠0)的解為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com