【題目】(1)如圖①,在矩形ABCD中,AB=4,AD=10,在BC邊上是否存在點(diǎn)P,使∠APD=90°,若存在,請(qǐng)用直尺和圓規(guī)作出點(diǎn)P并求出BP的長(zhǎng).(保留作圖痕跡)
(2)如圖②,在△ABC中,∠ABC=60°,BC=12,AD是BC邊上的高,E、F分別為AB,AC的中點(diǎn),當(dāng)AD=6時(shí),BC邊上是否存在一點(diǎn)Q,使∠EQF=90°,求此時(shí)BQ的長(zhǎng).
【答案】(1)2或8;(2)存在,3+.
【解析】試題分析:(1)以AD為直徑畫(huà)圓與BC交于點(diǎn)P1、P2,則點(diǎn)P1、P2為所求點(diǎn);由矩形的性質(zhì)得到AD=BC=10,AB=CD=4根據(jù)三角形相似即可解出;
(2)由三角形的中位線得到EF∥BC,EF=BC=6,根據(jù)EF與BC間距離為3,推出以EF為直徑的 O與BC相切,得出BC上符合條件的點(diǎn)Q只有一個(gè),記 O與BC相切于點(diǎn)Q,連接OQ,過(guò)點(diǎn)E作EG⊥BC,垂足為G,證出四邊形EOQG為正方形,由勾股定理即可求出.
解:(1)如圖①所示,點(diǎn)P1、P2為所求的點(diǎn);(保留作圖痕跡)
在矩形ABCD中,連接AP1、DP1,AD=BC=10,AB=CD=4,
設(shè)BP1=x,則P1C=10﹣x,
∵∠AP1D=90°,∴∠AP1B+∠CP1D=90°,
∵∠BAP1+∠AP1B=90°,∴∠BAP1=∠CP1D,
又∵∠B=∠C=90°,∴△ABP1∽△P1CD,
∴,∴,
解得:x1=2,x2=8,∴BP的長(zhǎng)是2或8
(2)如圖②,
∵EF分別為AB、AC的中點(diǎn),∴EF∥BC,EF=BC=6,
∵AD=6,AD⊥BC,∴EF與BC間距離為3,
∴以EF為直徑的⊙O與BC相切,
∴BC上符合條件的點(diǎn)Q只有一個(gè),記⊙O與BC相切于點(diǎn)Q,
連接OQ,過(guò)點(diǎn)E作EG⊥BC,垂足為G,
∴EG=OE=3,∴四邊形EOQG為正方形,
在Rt△EBG中,∠B=60°,EG=3,∴BG=,∴BQ=3+.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC的內(nèi)切圓⊙O與AB、BC、CA分別相切于點(diǎn)D、E、F,且∠ACB=90°,AB=5,BC=3,點(diǎn)P在射線AC上運(yùn)動(dòng),過(guò)點(diǎn)P作PH⊥AB,垂足為H.
(1)直接寫(xiě)出線段AD及⊙O半徑的長(zhǎng);
(2)設(shè)PH=x,PC=y,求y關(guān)于x的函數(shù)關(guān)系式;
(3)當(dāng)PH與⊙O相切時(shí),求相應(yīng)的y值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面說(shuō)法正確的是 ( )
A.絕對(duì)值最小的數(shù)是0
B.絕對(duì)值相等的兩個(gè)數(shù)相等
C.﹣a一定是負(fù)數(shù)
D.有理數(shù)的絕對(duì)值一定是正數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,二次函數(shù)y=x2+(2k﹣1)x+k+1的圖象與x軸相交于O、A兩點(diǎn).
(1)求這個(gè)二次函數(shù)的解析式;
(2)在這條拋物線的對(duì)稱(chēng)軸右邊的圖象上有一點(diǎn)B,使銳角△AOB的面積等于3.求點(diǎn)B的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠ABM=30°,AB=20,C是射線BM上一點(diǎn).
(1)在下列條件中,可以唯一確定BC長(zhǎng)的是 ;(填寫(xiě)所有符合條件的序號(hào))
①AC=13;②tan∠ACB=;③△ABC的面積為126.
(2)在(1)的答案中,選擇一個(gè)作為條件,畫(huà)出示意圖,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠A、∠B、∠C的三個(gè)外角度數(shù)的比為3:4:5,則∠A=( )
A.45°B.60°C.75°D.90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在我們所學(xué)的課本中,多項(xiàng)式與多項(xiàng)式相乘可以用幾何圖形的面積來(lái)表示.例如,(2a+b)(a+b)=2a2+3ab+b2就可以用圖(1)來(lái)表示.請(qǐng)你根據(jù)此方法寫(xiě)出圖(2)中圖形的面積所表示的代數(shù)恒等式:____________.
【答案】(a+2b)(2a+b)=2a2+5ab+2b2
【解析】試題分析:圖②的面積可以用長(zhǎng)為a+a+b,寬為b+a+b的長(zhǎng)方形面積求出,也可以由四個(gè)正方形與5個(gè)小長(zhǎng)方形的面積之和求出,表示出即可.
解:根據(jù)圖形列得:(a+2b)(2a+b)=2a2+5ab+2b2.
故答案為:(a+2b)(2a+b)=2a2+5ab+2b2.
考點(diǎn):多項(xiàng)式乘多項(xiàng)式.
點(diǎn)評(píng):此題考查了多項(xiàng)式乘以多項(xiàng)式法則,熟練掌握法則是解本題的關(guān)鍵.
【題型】填空題
【結(jié)束】
18
【題目】若一個(gè)正整數(shù)能表示為兩個(gè)正整數(shù)的平方差,則稱(chēng)這個(gè)正整數(shù)為“智慧數(shù)”(如3=22-12,16=52-32,則3和16是智慧數(shù)).已知按從小到大的順序構(gòu)成如下數(shù)列:3,5,7,8,9,11,12,13,15,16,17,19,20,21,23,24,25,…則第2 013個(gè)“智慧數(shù)”是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)先化簡(jiǎn),再求值:a(a-2b)+(a+b)2,其中a=-1,b=;
(2)若x2-5x=3,求(x-1)(2x-1)-(x+1)2+1的值.
【答案】(1)原式= 2a2+b2=2+2=4;(2)原式=4.
【解析】試題分析:(1)利用完全平方公式展開(kāi),化簡(jiǎn),代入求值. (2) 利用完全平方公式展開(kāi),化簡(jiǎn),整體代入求值.
解:(1)原式=a2-2ab+a2+2ab+b2=2a2+b2.
當(dāng)a=-1,b=時(shí),原式=2+2=4.
(2)原式=2x2-3x+1-(x2+2x+1)+1=x2-5x+1=3+1=4.
【題型】解答題
【結(jié)束】
22
【題目】已知化簡(jiǎn)(x2+px+8)(x2-3x+q)的結(jié)果中不含x2項(xiàng)和x3項(xiàng).
(1)求p,q的值.
(2)x2-2px+3q是否是完全平方式?如果是,請(qǐng)將其分解因式;如果不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一塊直角三角形紙片,兩直角邊AC=6 cm,BC=8 cm,現(xiàn)將直角邊AC沿直線AD折疊,使它落在斜邊AB上,且與AE重合,求CD的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com