【題目】如圖,AB為⊙O的直徑,CD是弦,AB⊥CD于點E,OF⊥AC于點F,BE=OF.
(1)求證:△AFO≌△CEB;
(2)若BE=4,CD=8,求:
①⊙O的半徑;
②求圖中陰影部分的面積.
【答案】(1)見解析;(2)①8;②
【解析】
(1)根據(jù)垂徑定理知BC=BD,再利用圓周角定理知∠A=∠DCB,而∠AFO=∠CEB,故可證明△AFO≌△CEB;(2)①利用垂徑定理得出CE=4,設(shè) OC=r,則 OE=r﹣4,根據(jù)勾股定理可得r2=(r﹣4)2+(4)2,即可求出r;②根據(jù)陰影部分等于扇形OABD的面積減去△CDO的面積即可求出.
(1)證明:∵AB 為⊙O 的直徑,AB⊥CD,
∴BC=BD,
∴∠A=∠DCB,
∴OF⊥AC,
∴∠AFO=∠CEB,
∵BE=OF,
∴△AFO≌△CEB(AAS).
(2)①∵AB 為⊙O 的直徑,AB⊥CD,
∴CE=CD=4
設(shè) OC=r,則 OE=r﹣4,
∴r2=(r﹣4)2+(4)2
∴r=8.
②連結(jié) OD.
∵OE=4=OC,
∴∠OCE=30°,∠COB=60°,
∴∠COD=120°,
∵△AFO≌△CEB,
∴S△AFO=S△BCE,
∴S陰=S扇形OCD﹣S△OCD
=﹣
=﹣16.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm.點P從點A開始沿AB邊向點B以1cm/s的速度移動,點Q從點B開始沿BC邊向點C以2cm/s的速度移動,當(dāng)其中一點達到終點后,另外一點也隨之停止運動.
(1)如果P,Q分別從A,B同時出發(fā),那么幾秒后,△PBQ的面積等于4cm2?
(2)如果P,Q分別從A,B同時出發(fā),那么幾秒后,PQ的長度等于5cm?
(3)在(1)中,當(dāng)P、Q出發(fā)幾秒時,△PBQ的面積最大,最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)店銷售一款工藝品,每件的成本是50元,據(jù)市場調(diào)查,銷售單價是100元時,每天的銷售量是50件,而銷售單價每降低1元,每天就可多售出5件,但要求銷售單價不得低于成本.設(shè)銷售單價x元.
(1)用含x的代數(shù)式表示現(xiàn)在的銷售數(shù)量為_________件;
(2)當(dāng)x為多少元時,網(wǎng)店既能讓利顧客,又能每天獲得銷售利潤4000元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是□ ABCD的對角線,延長BA至點E,使AE=AB,連接DE.
(1)求證:四邊形ACDE是平行四邊形;
(2)連接EC交AD于點O,若∠EOD=2∠B,求證:四邊形ACDE是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將正方形繞點逆時針旋轉(zhuǎn)后得到正方形,依此方式,繞點連續(xù)旋轉(zhuǎn)2019次得到正方形,如果點的坐標(biāo)為(1,0),那么點的坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點,分別在正方形的邊,上,且,點在射線上(點不與點重合).將線段繞點順時針旋轉(zhuǎn)得到線段,過點作的垂線,垂足為點,交射線于點.
(1)如圖1,若點是的中點,點在線段上,線段,,的數(shù)量關(guān)系為 .
(2)如圖2,若點不是的中點,點在線段上,判斷(1)中的結(jié)論是否仍然成立.若成立,請寫出證明過程;若不成立,請說明理由.
(3)正方形的邊長為6,,,請直接寫出線段的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,AC=16cm,BC=8cm,一動點P從點C出發(fā)沿著CB方向以2cm/s的速度運動,另一動點Q從A出發(fā)沿著AC邊以4cm/s的速度運動,P、Q兩點同時出發(fā),運動時間為t(s).
(1)若△PCQ的面積是△ABC面積的,求t的值?
(2)△PCQ的面積能否與四邊形ABPQ面積相等?若能,求出t的值;若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:如果x1,x2是一元二次方程ax2+bx+c=0的兩根,
那么有x1+x2=﹣,x1x2= .這是一元二次方程根與系數(shù)的關(guān)系,我們利用它可以用來解題,例x1,x2是方程x2+6x﹣3=0的兩根,求x12+x22的值.解法可以這樣:∵x1+x2=﹣6,x1x2=﹣3則x12+x22=(x1+x2)2﹣2x1x2=(﹣6)2﹣2×(﹣3)=42.
請你根據(jù)以上解法解答下題:已知x1,x2是方程x2﹣4x+2=0的兩根,求:
(1) 的值;
(2)(x1﹣x2)2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線與x軸交于點,,與y軸交于點C,頂點為D,直線AD交y軸于點E.
(1)求拋物線的解析式.
(2)如圖2,將沿直線AD平移得到.
①當(dāng)點M落在拋物線上時,求點M的坐標(biāo).
②在移動過程中,存在點M使為直角三角形,請直接寫出所有符合條件的點M的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com