【題目】某水果店銷售一種水果的成本價是5/千克,在銷售中發(fā)現(xiàn),當(dāng)這種水果的價格定為7/千克時,每天可以賣出160千克,在此基礎(chǔ)上,這種水果的單價每提高1/千克,該水果店每天就會少賣出20千克,設(shè)這種水果的單價為元(),

1)請用含的代數(shù)式表示:每千克水果的利潤 元及每天的銷售量 千克.

2)若該水果店一天銷售這種水果所獲得的利潤是420元,為了讓利于顧客,單價應(yīng)定為多少元?

【答案】(1)(x-5),(300-20x);(2)單價應(yīng)為8元.

【解析】

1)根據(jù)利潤=售價-進(jìn)價和水果的單價每提高1/千克.該水果店每天就會少賣出20千克即可得出結(jié)論;
2)根據(jù)利潤=售價-進(jìn)價列出方程并解答.

解:(1)每千克水果的利潤(x-5)元

每天的銷售量160-20x-7=300-20x(千克).
故答案是:(x-5);(300-20x);
2)由題意知,(x-5[160-20x-7]=420
化簡得:x2-20x+96=0
解得x1=8,x2=12
因?yàn)樽尷陬櫩停?/span>
所以x=8符合題意.
答:單價應(yīng)定為8元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y1=k1x+b(k1≠0)與反比例函數(shù)(k2≠0)的圖象交于點(diǎn)A(41),B(n,-2)兩點(diǎn).

(1)求一次函數(shù)與反比例函數(shù)的解析式.

(2)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在初中階段的函數(shù)學(xué)習(xí)中,我們經(jīng)歷了“確定函數(shù)的表達(dá)式--利用函數(shù)圖象研究其性質(zhì)--運(yùn)用函數(shù)解決問題”的學(xué)習(xí)過程.在畫函數(shù)圖象時,我們通過描點(diǎn)連線或平移的方法畫出函數(shù)圖象.結(jié)合上面經(jīng)歷的學(xué)習(xí)過程,我們來解決下面的問題:已知函數(shù).

1)當(dāng)x=-1時,=0;當(dāng)x=-2時,=5,則= ,= .

2)在給出的平面直角坐標(biāo)系中畫出該函數(shù)圖像

3)已知函數(shù)的圖像如圖所示,結(jié)合你畫出的函數(shù)圖像,直接寫出時,x的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場開業(yè)后經(jīng)歷了從虧損到盈利的過程,圖像刻畫了該店開業(yè)以來累計利潤(萬元)與開業(yè)時間(月)之間的關(guān)系(累計利潤是指前個月利潤總和).

1)求之間的函數(shù)關(guān)系式;

2)截止到第幾個月,累計利潤可達(dá)16萬元?

3)求第9個月的利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l x.y軸交于B,A兩點(diǎn),點(diǎn)DC分別為線段AB,OB的中點(diǎn),連結(jié)CD,如圖,將DCB繞點(diǎn)B按順時針方向旋轉(zhuǎn)角,如圖.

(1)連結(jié)OCAD,求證

(2)當(dāng)0°<<180°時,若DCB旋轉(zhuǎn)至A,CD三點(diǎn)共線時,求線段OD的長;

(3)試探索:180°<<360°時,是否還有可能存在A,C,D三點(diǎn)共線的情況,若存在,求出此直線的表達(dá)式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在 11×16 的網(wǎng)格圖中,△ABC 三個頂點(diǎn)坐標(biāo)分別為 A(﹣4,0),B(﹣1,1),C(﹣2,3).

(1)請畫出△ABC 沿x 軸正方向平移4個單位長度所得到的△A1B1C1;

(2)以原點(diǎn)O為位似中心,將(1)中的△A1B1C1 放大為原來的3倍得到△A2B2C2,請在第一象限內(nèi)畫出△A2B2C2,并直接寫出△A2B2C2 三個頂點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù) 的圖像過點(diǎn)A(-4,3),B(4,4).

1)求拋物線二次函數(shù)的解析式.

2)求一次函數(shù)直線AB的解析式.

3)看圖直接寫出一次函數(shù)直線AB的函數(shù)值大于二次函數(shù)的函數(shù)值的x的取值范圍.

4)求證:△ACB是直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)yax2+bx+c圖象的一部分,其對稱軸是x=﹣1,且過點(diǎn)(﹣3,0),下列說法:abc0②2ab0;③4a+2b+c0;若(﹣5,y1),(3,y2)是拋物線上兩點(diǎn),則y1y2,其中說法正確的是(  )

A.①②B.②③C.①②④D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線l的函數(shù)表達(dá)式為yx,點(diǎn)O1的坐標(biāo)為(10),以O1為圓心,O1O為半徑畫圓,交直線l于點(diǎn)P1,交x軸正半軸于點(diǎn)O2,以O2為圓心,O2O為半徑畫圓,交直線l于點(diǎn)P2,交x軸正半軸于點(diǎn)O3,以O3為圓心,O3O為半徑畫圓,交直線l于點(diǎn)P3,交x軸正半軸于點(diǎn)O4;…按此做法進(jìn)行下去,其中的長_____

查看答案和解析>>

同步練習(xí)冊答案