【題目】如圖,在邊長(zhǎng)為4的菱形ABCD中,∠A=60°,點(diǎn)M、N是邊AB、BC上的動(dòng)點(diǎn),若△DMN為等邊三角形,點(diǎn)M、N不與點(diǎn)A、B、C重合,則△BMN面積的最大值是_____.
【答案】
【解析】
先判斷出△DMB≌△DNC,進(jìn)而判斷出當(dāng)△DMN的面積最小時(shí),△BMN的面積最大,即可得出結(jié)論.
解:連接BD,
∵四邊形ABCD是菱形,
∴BD=CD,DN=DM,
∵∠BDM=∠MDN﹣∠BDN,
∵∠CDN=∠BDC﹣∠BDN,∠MDN=∠BDC=60°,
∴∠CDN=∠BDM,
∴△DMB≌△DNC(SAS),
∴S△DMB=S△DNC,
∴S四邊形DMBN=S△DBC,
∵S△BMN=S四邊形DMBN﹣S△DMN,
∴當(dāng)△DMN的面積最小時(shí),△BMN的面積最大,
當(dāng)DN⊥BC時(shí),△DMN的邊長(zhǎng)最短,
即:△DMN的面積最小,此時(shí)DN=,
即:S△DMN=,
∴△BMN的面積的最大值為,
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為更好的了解中學(xué)生課外閱讀的情況,學(xué)校團(tuán)委將初一年級(jí)學(xué)生一學(xué)期閱讀課外書(shū)籍量分為A(3本以內(nèi))、B(3——6本)、C(6——10本)、D(10本以上)四種情況進(jìn)行了隨機(jī)調(diào)查,并根據(jù)調(diào)查結(jié)果制成了如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)結(jié)合統(tǒng)計(jì)圖所給信息解答上列問(wèn)題:
(1)在扇形統(tǒng)計(jì)圖中C所占的百分比是多少?
(2)請(qǐng)將折線統(tǒng)計(jì)圖補(bǔ)充完整;
(3)學(xué)校團(tuán)委欲從課外閱讀量在10本以上的同學(xué)中隨機(jī)邀請(qǐng)兩位參加學(xué)校舉辦的“書(shū)香致遠(yuǎn) 墨卷至恒”主題讀書(shū)日的形象大使,請(qǐng)你用列表法或畫(huà)樹(shù)狀圖的方法,求所選出的兩位同學(xué)恰好都是女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方形ABCD中,點(diǎn)E是BC上的一個(gè)動(dòng)點(diǎn),EF⊥AE交CD于點(diǎn)F,以AE,EF為邊作矩形AEFG,若AB=4,則點(diǎn)G到AD距離的最大值是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司準(zhǔn)備購(gòu)進(jìn)一批產(chǎn)品進(jìn)行銷(xiāo)售,該產(chǎn)品的進(jìn)貨單價(jià)為6元/個(gè).根據(jù)市場(chǎng)調(diào)查,該產(chǎn)品的日銷(xiāo)售量y(個(gè))與銷(xiāo)售單價(jià)x(元/個(gè))之間滿足一次函數(shù)關(guān)系.關(guān)于日銷(xiāo)售量y(個(gè))與銷(xiāo)售單價(jià)x(元/個(gè))的幾組數(shù)據(jù)如表:
x | 10 | 12 | 14 | 16 |
y | 300 | 240 | 180 | m |
(1)求出y與x之間的函數(shù)關(guān)系式(不要求寫(xiě)出自變量的取值范圍)及m的值.
(2)按照(1)中的銷(xiāo)售規(guī)律,當(dāng)銷(xiāo)售單價(jià)定為17.5元/個(gè)時(shí),日銷(xiāo)售量為 個(gè),此時(shí),獲得日銷(xiāo)售利潤(rùn)是 .
(3)為防范風(fēng)險(xiǎn),該公司將日進(jìn)貨成本控制在900(含900元)以內(nèi),按照(1)中的銷(xiāo)售規(guī)律,要使日銷(xiāo)售利潤(rùn)最大,則銷(xiāo)售單價(jià)應(yīng)定為多少?并求出此時(shí)的最大利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)計(jì)劃購(gòu)進(jìn)A,B兩種型號(hào)的手機(jī),已知每部A型號(hào)手機(jī)的進(jìn)價(jià)比每部B型號(hào)手機(jī)進(jìn)價(jià)多500元,每部A型號(hào)手機(jī)的售價(jià)是2500元,每部B型號(hào)手機(jī)的售價(jià)是2100元.
(1)若商場(chǎng)用50000元共購(gòu)進(jìn)A型號(hào)手機(jī)10部,B型號(hào)手機(jī)20部,求A、B兩種型號(hào)的手機(jī)每部進(jìn)價(jià)各是多少元?
(2)為了滿足市場(chǎng)需求,商場(chǎng)決定用不超過(guò)7.5萬(wàn)元采購(gòu)A、B兩種型號(hào)的手機(jī)共40部,且A型號(hào)手機(jī)的數(shù)量不少于B型號(hào)手機(jī)數(shù)量的2倍.
①該商場(chǎng)有哪幾種進(jìn)貨方式?
②該商場(chǎng)選擇哪種進(jìn)貨方式,獲得的利潤(rùn)最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y1=ax2+b經(jīng)過(guò)C(﹣2,4),D(﹣4,4)兩點(diǎn).
(1)求拋物線y1的函數(shù)表達(dá)式;
(2)將拋物線y1沿x軸翻折,再向右平移,得到拋物線y2,與y2軸交于點(diǎn)F,點(diǎn)E為拋物線2上一點(diǎn),要使以CD為邊,C、D、E、F四點(diǎn)為頂點(diǎn)的四邊形為平行四邊形,求所有滿足條件的拋物線y2的函表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC、△DCE、△FEG是三個(gè)全等的等腰三角形,底邊BC、CE、EG在同一直線上,且AB= ,BC=1,連結(jié)BF,分別交AC、DC、DE于點(diǎn)P、Q、R.
(1)求證:△BFG∽△FEG
(2)求sin∠FBG的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,過(guò)點(diǎn)A的直線l分別與x軸、y軸交于點(diǎn)C,D.
(1)求直線l的函數(shù)表達(dá)式.
(2)P為x軸上一點(diǎn),若△PCD為等腰三角形直接寫(xiě)出點(diǎn)P的坐標(biāo).
(3)將線段AB繞B點(diǎn)旋轉(zhuǎn)90°,直接寫(xiě)出點(diǎn)A對(duì)應(yīng)的點(diǎn)A的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為了測(cè)量建筑物AC的高度,從距離建筑物底部C處50米的點(diǎn)D(點(diǎn)D與建筑物底部C在同一水平面上)出發(fā),沿坡度i=1:2的斜坡DB前進(jìn)10米到達(dá)點(diǎn)B,在點(diǎn)B處測(cè)得建筑物頂部A的仰角為53°,求建筑物AC的高度.(結(jié)果精確到0.1米.參考數(shù)據(jù):sin53°≈0.798,cos53°≈0.602,tan53°≈1.327.)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com