【題目】如圖,動點、分別在直線與上,且,與的角平分線相交于點,若以為直徑作,則點與的位置關(guān)系是( )
A. 點P在⊙O外 B. 點P在⊙O內(nèi)
C. 點P在⊙O上 D. 以上都有可能
【答案】C
【解析】
先根據(jù)平行線的性質(zhì)得出∠BMN+∠MND=180°,再由角平分線的性質(zhì)可得出∠PMN=∠BMN,∠PNM=∠MND,故可知∠PMN+∠PNM=90°,由三角形的內(nèi)角和是180°得出∠MPN=90°,再由直角三角形斜邊上的中線等于斜邊的一半得出OP=MN,進而根據(jù)點與圓的位置關(guān)系即可得出結(jié)論.
∵AB∥CD,
∴∠BMN+∠MND=180°,
∵∠BMN與∠MND的平分線相交于點P,
∴∠PMN=∠BMN,∠PNM=∠MND,
∴∠PMN+∠PNM=90°,
∴∠MPN=180°-(∠PMN+∠PNM)=180°-90°=90°,
∴以MN為直徑作⊙O時,OP=MN=⊙O的半徑,
∴點P在⊙O上.
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖平面直角坐標系中,A點坐標為(0,1),AB=BC=,∠ABC=90°,CD⊥x軸.
(1)填空:B點坐標為 ,C點坐標為 .
(2)若點P是直線CD上第一象限上一點且△PAB的面積為6.5,求P點的坐標;
(3)在(2)的條件下點M是x軸上線段OD之間的一動點,當△PAM為等腰三角形時,直接寫出點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB=AC,∠A=36°,AB的垂直平分線MD交AC于點D,AB于M,以下結(jié)論:①△BCD是等腰三角形;②射線BD是△ACB的角平分線;③△BCD的周長C△BCD=AC+BC;④△ADM≌BCD.正確的有( )
A.①②③B.①②C.①③D.③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某游泳館推出了兩種收費方式.
方式一:顧客先購買會員卡,每張會員卡200元,僅限本人一年內(nèi)使用,憑卡游泳,每次游泳再付費30元.
方式二:顧客不購買會員卡,每次游泳付費40元.
設小亮在一年內(nèi)來此游泳館的次數(shù)為x次,選擇方式一的總費用為y1(元),選擇方式二的總費用為y2(元).
(1)請分別寫出y1,y2與x之間的函數(shù)表達式.
(2)若小亮一年內(nèi)來此游泳館的次數(shù)為15次,選擇哪種方式比較劃算?
(3)若小亮計劃拿出1400元用于在此游泳館游泳,采用哪種付費方式更劃算?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,過點A(2,0)的兩條直線,分別交軸于B,C,其中點B在原點上方,點C在原點下方,已知AB=.
(1)求點B的坐標;
(2)若△ABC的面積為4,求的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,圖①是一個三角形,分別連接三邊中點得圖②,再分別連接圖②中的小三角形三邊中點,得圖③……按此方法繼續(xù)下去.
在第個圖形中有______個三角形(用含的式子表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2016廣西桂林市)已知任意三角形的三邊長,如何求三角形面積?
古希臘的幾何學家海倫解決了這個問題,在他的著作《度量論》一書中給出了計算公式﹣﹣海倫公式S=(其中a,b,c是三角形的三邊長,p=,S為三角形的面積),并給出了證明
例如:在△ABC中,a=3,b=4,c=5,那么它的面積可以這樣計算:
∵a=3,b=4,c=5,∴p==6,∴S===6.
事實上,對于已知三角形的三邊長求三角形面積的問題,還可用我國南宋時期數(shù)學家秦九韶提出的秦九韶公式等方法解決.
如圖,在△ABC中,BC=5,AC=6,AB=9
(1)用海倫公式求△ABC的面積;
(2)求△ABC的內(nèi)切圓半徑r.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com