10.已知數(shù)列{an}的首項a1=2,數(shù)列{bn}為等比數(shù)列,且bn=$\frac{{a}_{n+1}}{{a}_{n}}$,又b10b11=2017${\;}^{\frac{1}{10}}$,則a21=4034.

分析 由已知結(jié)合bn=$\frac{{a}_{n+1}}{{a}_{n}}$,得到a21=b1b2…b20,結(jié)合b10b11=2017${\;}^{\frac{1}{10}}$,及等比數(shù)列的性質(zhì)求得a21

解答 解:由bn=$\frac{{a}_{n+1}}{{a}_{n}}$,且a1=2,得b1=$\frac{{a}_{2}}{{a}_{1}}=\frac{{a}_{2}}{2}$.
b2=$\frac{{a}_{3}}{{a}_{2}}$,a3=a2b2=2b1b2
b3=$\frac{{a}_{4}}{{a}_{3}}$,a4=a3b3=2b1b2b3

an=2b1b2…bn-1
∴a21=2b1b2…b20
∵數(shù)列{bn}為等比數(shù)列,
∴a21=2(b1b20)(b2b19)…(b10b11)=2$(201{7}^{\frac{1}{10}})^{10}$=4034.
故答案為:4034.

點評 本題考查了數(shù)列遞推式,考查了等比數(shù)列的性質(zhì),是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.甲、乙兩家商場對同一種商品開展促銷活動,對購買該商品的顧客兩家商場的獎勵方案如下:甲商場:顧客轉(zhuǎn)動如圖所示圓盤,當(dāng)指針指向陰影部分(圖中兩個陰影部分均為扇形,且每個扇形圓心角均為$\frac{π}{4}$,邊界忽略不計)即為中獎.乙商場:從裝有2個白球、2個藍(lán)球和2個紅球的盒子中一次性摸出1球(這些球除顏色外完全相同),它是紅球的概率是$\frac{1}{3}$,若從盒子中一次性摸出2球,且摸到的是2個相同顏色的球,即為中獎.
(Ⅰ)求實數(shù)a的值;
(Ⅱ)試問:購買該商品的顧客在哪家商場中獎的可能性大?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.等差數(shù)列{an}中,a2+a3=9,a4+a5=21,那么它的公差是( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知向量$|{\overrightarrow a}|=1,|{\overrightarrow b}|=2$,$\overrightarrow a⊥({\overrightarrow a+\overrightarrow b})$,則向量$\overrightarrow a$與$\overrightarrow b$的夾角為120°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.執(zhí)行如圖程序,輸出S的值為(  )
A.$\frac{1007}{2015}$B.$\frac{1008}{2017}$C.$\frac{2016}{2017}$D.$\frac{2015}{4032}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某民調(diào)機構(gòu)為了了解民眾是否支持英國脫離歐盟,隨機抽調(diào)了100名民眾,他們的年齡的頻數(shù)及支持英國脫離歐盟的人數(shù)分布如下表:
年齡段18-24歲25-49歲50-64歲65歲及以上
頻數(shù)35202520
支持脫歐的人數(shù)10101515
(Ⅰ)由以上統(tǒng)計數(shù)據(jù)填下面列聯(lián)表,并判斷是否有99%的把握認(rèn)為以50歲胃分界點對是否支持脫離歐盟的態(tài)度有差異;
年齡低于50歲的人數(shù)年齡不低于50歲的人數(shù)合計
支持“脫歐”人數(shù)
不支持“脫歐”人數(shù)
合計
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.250.150.100.050.0250.010
K01.3232.0722.7063.8415.0246.635
(Ⅱ)若采用分層抽樣的方式從18-64歲且支持英國脫離歐盟的民眾中選出7人,再從這7人中隨機選出2人,求這2人至少有1人年齡在18-24歲的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知全集U=R,集合A={x|2<x<9},B={x|-2≤x≤5}.
(1)求A∩B;B∪(∁UA);
(2)已知集合C={x|a≤x≤2-a},若C∪(∁UB)=R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,三棱柱ABC-A1B1C1中,D是AA1的中點,E為BC的中點.
(Ⅰ)求證:直線AE∥平面BC1D;
(Ⅱ)若三棱柱ABC-A1B1C1是正三棱柱,AB=2,AA1=4,求點E到平面BC1D的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知變量x與y的取值如表所示,且2.5<n<m<6.5,則由該數(shù)據(jù)算得的線性回歸方程可能是( 。
x 2 3 4 5
 y 6.5 m n2.5
A.$\stackrel{∧}{y}$=0.8x+2.3B.$\stackrel{∧}{y}$=2x+0.4C.$\stackrel{∧}{y}$=-1.5x+8D.$\stackrel{∧}{y}$=-1.6x+10

查看答案和解析>>

同步練習(xí)冊答案