18.已知向量$\overrightarrow{a}$=(cosx,-1),$\overrightarrow$=($\sqrt{3}$sinx,-$\frac{1}{2}$),函數(shù)$f(x)=(\overrightarrow a+\overrightarrow b)•\overrightarrow a-2$.
(1)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間;
(2)在△ABC中,三內(nèi)角A,B,C的對邊分別為a,b,c,已知函數(shù)∴的圖象經(jīng)過點(diǎn)$(A,\;\frac{1}{2})$,b、a、c成等差數(shù)列,且$\overrightarrow{AB}$•$\overrightarrow{AC}$=9,求a的值.

分析 (1)利用向量的數(shù)量積化簡函數(shù)的解析式,利用函數(shù)的周期以及正弦函數(shù)的單調(diào)區(qū)間求解即可.
(2)求出A,利用等差數(shù)列以及向量的數(shù)量積求出bc,通過三角形的面積以及余弦定理求解a即可.

解答 解:$f(x)=(\overrightarrow a+\overrightarrow b)•\overrightarrow a-2$=$|\vec a{|^2}+\vec a•\vec b-2$=$\frac{1}{2}cos2x+\frac{{\sqrt{3}}}{2}sin2x=sin({2x+\frac{π}{6}})$,
(1)最小正周期:$T=\frac{2π}{2}=π$由$2kπ-\frac{π}{2}≤2x+\frac{π}{6}≤2kπ+\frac{π}{2}(k∈Z)$得:$kπ-\frac{π}{3}≤x≤kπ+\frac{π}{6}(k∈Z)$,
所以f(x)的單調(diào)遞增區(qū)間為:$[kπ-\frac{π}{3},kπ+\frac{π}{6}](k∈Z)$;(6分)
(2)由$f(A)=sin(2A+\frac{π}{6})=\frac{1}{2}$可得:$2A+\frac{π}{6}=\frac{π}{6}+2kπ或\frac{5π}{6}+2kπ(k∈Z)$所以$A=\frac{π}{3}$,
又因?yàn)閎,a,c成等差數(shù)列,所以2a=b+c,(8分)
而,$\overrightarrow{AB}$•$\overrightarrow{AC}$=bccosA=$\frac{1}{2}bc$=9,∴bc=18,$cosA=\frac{1}{2}=\frac{{{{(b+c)}^2}-{a^2}}}{2bc}-1=\frac{{4{a^2}-{a^2}}}{36}-1=\frac{a^2}{12}-1$,
∴$a=3\sqrt{2}$.(12分)

點(diǎn)評 本題考查向量以及數(shù)列與三角函數(shù)相結(jié)合,考查數(shù)量積的求法,兩角和與差的三角函數(shù),三角形的解法,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)函數(shù)f(x)在x0處可導(dǎo),則$\underset{lim}{△x→0}$$\frac{f({x}_{0}-△x)-f({x}_{0})}{△x}$=( 。
A.f′(x0B.-f′(x0C.f(x0D.-f(x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知{an}滿足${a_1}=1,{a_n}+{a_{n+1}}={({\frac{1}{4}})^n}({n∈{N^*}}),{S_n}={a_1}+4•{a_2}+{4^2}•{a_3}+…+{4^{n-1}}{a_n}$,類比課本中推導(dǎo)等比數(shù)列前n項(xiàng)和公式的方法,可求得${S_n}-\frac{4^n}{5}{a_n}$=$\frac{n}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知$c=2,C=\frac{π}{3}$.
(1)若$a=\frac{{2\sqrt{3}}}{3}$,求A;
(2)若sinB=2sinA,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知x滿足不等式${log_{\frac{1}{2}}}{x^2}$≥${log_{\frac{1}{2}}}(3x-2)$,函數(shù)$f(x)=({log_2}\frac{x}{4})({log_2}\frac{x}{2})$.
(Ⅰ)求出x的取值范圍;   
(Ⅱ)求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下面說法不正確的選項(xiàng)(  )
A.函數(shù)的單調(diào)區(qū)間可以是函數(shù)的定義域
B.函數(shù)的多個(gè)單調(diào)增區(qū)間的并集也是其單調(diào)增區(qū)間
C.具有奇偶性的函數(shù)的定義域定關(guān)于原點(diǎn)對稱
D.關(guān)于原點(diǎn)對稱的圖象一定是奇函數(shù)的圖象

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)函數(shù)$f(x)=({x-1}){e^{x-1}}+\frac{a}{2}{x^2}$.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若a≥-e,討論函數(shù)f(x)的零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.函數(shù)$f(x)=2sin(ωx-\frac{π}{6})+1$(A>0,ω>0),其圖象相鄰兩條對稱軸之間的距離為$\frac{π}{2}$
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)$x∈[0,\frac{π}{2}]$時(shí),求f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某校高二(22)班的一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,可見部分如下:

試根據(jù)圖表中的信息解答下列問題:
(I)求全班的學(xué)生人數(shù)及分?jǐn)?shù)在[70,80)之間的頻數(shù);
(II)為快速了解學(xué)生的答題情況,老師按分層抽樣的方法從位于[70,80),[80,90)和[90,100]分?jǐn)?shù)段的試卷中抽取8份進(jìn)行分析,再從中任選3份進(jìn)行交流,若在交流的試卷中,成績位于[70,80)分?jǐn)?shù)段的份數(shù)為ξ,求ξ的分布列.

查看答案和解析>>

同步練習(xí)冊答案