1.已知函數(shù)f(x)=lnx-$\frac{1}{2}$a(x-1)(a∈R).
(Ⅰ)若a=-2,求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若不等式f(x)<0對(duì)任意x∈(1,+∞)恒成立,求實(shí)數(shù)a的取值范圍.

分析 (1)一求切點(diǎn),二求切點(diǎn)處的導(dǎo)數(shù),即切線的斜率;
(2)只需求出函數(shù)f(x)在區(qū)間[1,+∞)上的最大值即可,利用導(dǎo)數(shù)研究單調(diào)性,進(jìn)一步求其最值構(gòu)造不等式求解;比較大小可將兩個(gè)值看成函數(shù)值,然后利用函數(shù)的性質(zhì)求解.

解答 解:(Ⅰ) 因?yàn)閍=-2時(shí),f(x)=inx+x-1,f′(x)=$\frac{1}{x}$+1.
所以切點(diǎn)為(1,0),k=f′(1)=2.
所以a=-2時(shí),曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為y=2x-2.
( II)( i)由f(x)=lnx-$\frac{1}{2}$a(x-1),
所以f′(x)=$\frac{1}{x}$-$\frac{a}{2}$,
①當(dāng)a≤0時(shí),x∈(1,+∞),f′(x)>0,
∴f(x)在(1,+∞)上單調(diào)遞增,f(x)>f(1)=0,
∴a≤0不合題意.
②當(dāng)a≥2即0$<\frac{2}{a}$≤1時(shí),f′(x)=$\frac{1}{x}$-$\frac{a}{2}$<0,在(1,+∞)上恒成立,
∴f(x)在(1,+∞)上單調(diào)遞減,有f(x)<f(1)=0,
∴a≥2滿足題意.
③若0<a<2即$\frac{2}{a}>1$時(shí),由f′(x)>0,可得1<x<$\frac{2}{a}$,由f′(x)<0,可得x$>\frac{2}{a}$,
∴f(x)在$(1,\frac{2}{a})$上單調(diào)遞增,在$(\frac{2}{a},+∞)$上單調(diào)遞減,
∴f($\frac{2}{a}$)>f(1)=0,
∴0<a<2不合題意.
綜上所述,實(shí)數(shù)a的取值范圍是[2,+∞).

點(diǎn)評(píng) 本題主要考查函數(shù)、導(dǎo)數(shù)、不等式等基本知識(shí);考查運(yùn)算求解能力、推理論證能力;考查化歸與轉(zhuǎn)化思想、函數(shù)與方程的思想、分類整合思想、數(shù)形結(jié)合思想.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}是首項(xiàng)為a,公差為b的等差數(shù)列,數(shù)列{bn}是首項(xiàng)為b,公比為a的等比數(shù)列,且a1<b1<a2<b2<a3,其中a,b,m,n∈N*
(Ⅰ)求a的值;
(Ⅱ)若數(shù)列{1+am}與數(shù)列{bn}有公共項(xiàng),將所有公共項(xiàng)按原來順序排列后構(gòu)成一個(gè)新數(shù)列{cn},求數(shù)列{cn}的通項(xiàng)公式;
(Ⅲ)設(shè)dm=$\frac{a_m}{2m}$,m∈N*,求證:$\frac{1}{{1+{d_1}}}$+$\frac{2}{{(1+{d_1})(1+{d_2})}}$+…+$\frac{n}{{(1+{d_1})(1+{d_2})…(1+{d_n})}}$<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.點(diǎn)P到A(-2,0)的距離是點(diǎn)P到B(1,0)的距離的2倍.
(Ⅰ)求點(diǎn)P的軌跡方程;
(Ⅱ)點(diǎn)P與點(diǎn)Q關(guān)于點(diǎn)(2,1)對(duì)稱,點(diǎn)C(3,0),求|QA|2+|QC|2的最大值和最小值.
(Ⅲ)若過A的直線從左向右依次交第(II)問中Q的軌跡于不同兩點(diǎn)E,F(xiàn),$\overrightarrow{FA}$=λ$\overrightarrow{EA}$,判斷λ的取值范圍并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知F1(-2,0),F(xiàn)2(2,0)分別是橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn),且橢圓C過點(diǎn)(-$\sqrt{3}$,1).
(1)求橢圓C的方程;
(2)直線l過橢圓C的右焦點(diǎn)F2且斜率為1與橢圓C交于A,B兩點(diǎn),求弦AB的長(zhǎng);
(3)以第(2)題中的AB為邊作一個(gè)等邊三角形ABP,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)函數(shù)f(x)=lnx-$\frac{1}{2}$ax2-bx
(1)當(dāng)a=b=$\frac{1}{2}$時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)F(x)=f(x)+$\frac{1}{2}$ax2+bx+$\frac{a}{x}$.對(duì)任意x∈(0,3],總有F′(x)≤$\frac{1}{2}$成立,求實(shí)數(shù)a的取值范圍;
(3)當(dāng)a=0,b=-1時(shí),方程f(x)=mx在區(qū)間[1,e2]內(nèi)有唯一實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F(1,0)
(Ⅰ)求拋物線的方程;
(Ⅱ)已知過點(diǎn)(-1,0)的直線l與拋物線C交于A,B兩點(diǎn),且|FA|=2|FB|,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知正方體ABCD-A1B1C1D1,如圖,E是棱AA1上動(dòng)點(diǎn),過點(diǎn)D1,E,B作該正方體的截面與棱CC1交于點(diǎn)F.設(shè)AE=x,則下列關(guān)于四棱錐B1-BFD1E的命題,其中正確的序號(hào)有③④
①底面BFD1E的面積隨著x增大而增大;
②四棱錐B1-BFD1E的體積隨著x增大先增大后減少;
③底面BFD1E的面積隨著x增大先減少后增大;
④四棱錐B1-BFD1E的體積與x取值無關(guān),且總保持恒定不變.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)y=(x-4)|x|在[a,4]上的最小值為-4,則實(shí)數(shù)a的取值范圍是( 。
A.$[{2-2\sqrt{2},2}]$B.(-∞,2]C.$[{2-2\sqrt{2},2})$D.$({2-2\sqrt{2},2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某調(diào)查機(jī)構(gòu)為了研究“戶外活動(dòng)的時(shí)間長(zhǎng)短”與“患感冒”兩個(gè)分類變量是否相關(guān),在該地隨機(jī)抽取了若干名居民進(jìn)行調(diào)查,得到數(shù)據(jù)如表所示:
患感冒不患感冒合計(jì)
活動(dòng)時(shí)間超過1小時(shí)204060
活動(dòng)時(shí)間低于1小時(shí)301040
合計(jì)5050100
若從被調(diào)查的居民中隨機(jī)抽取1人,則取到活動(dòng)時(shí)間超過1小時(shí)的居民的概率為$\frac{3}{5}$.
(1)完善上述2×2列聯(lián)表;
(2)能否在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“戶外活動(dòng)的時(shí)間長(zhǎng)短”與“患感冒”兩者間相關(guān).
P(K2≥k00.0100.0050.001
k06.6357.87910.828

查看答案和解析>>

同步練習(xí)冊(cè)答案