13.在直四棱柱ABCD-A1B1C1D1中,底面ABCD是邊長(zhǎng)為1的正方形,AA1=2,M、N分別是A1B1、A1D1中點(diǎn),則BM與AN所成的角的余弦值為( 。
A.$\frac{15}{17}$B.$\frac{16}{17}$C.$\frac{5}{13}$D.$\frac{12}{13}$

分析 取B1C1的中點(diǎn)P,連結(jié)BP,MP,則∠MBP是BM與AN所成的角(或所成角的補(bǔ)角),由此能求出BM與AN所成的角的余弦值.

解答 解:取B1C1的中點(diǎn)P,BP,MP,
∵直四棱柱ABCD-A1B1C1D1中,底面ABCD是邊長(zhǎng)為1的正方形,
AA1=2,M、N分別是A1B1、A1D1中點(diǎn),
∴AN∥BP,
∴∠MBP是BM與AN所成的角(或所成角的補(bǔ)角),
BM=BP=$\sqrt{{2}^{2}+(\frac{1}{2})^{2}}$=$\frac{\sqrt{17}}{2}$,MP=$\sqrt{(\frac{1}{2})^{2}+(\frac{1}{2})^{2}}$=$\frac{\sqrt{2}}{2}$,
∴cos∠MBP=$\frac{B{M}^{2}+B{P}^{2}-M{P}^{2}}{2BM•BP}$=$\frac{\frac{17}{4}+\frac{17}{4}-\frac{2}{4}}{2×\frac{\sqrt{17}}{2}×\frac{\sqrt{17}}{2}}$=$\frac{16}{17}$.
∴BM與AN所成的角的余弦值為$\frac{16}{17}$.
故選:B.

點(diǎn)評(píng) 本題考查異面直線所成角的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間中線線、線面、面面間的位置關(guān)系的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.“函數(shù)f(x)=a+lnx(x≥e)存在零點(diǎn)”是“a<-1”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分不用必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知雙曲線${x^2}-\frac{y^2}{2}=1$的焦點(diǎn)為F1,F(xiàn)2,則焦距|F1F2|=( 。
A.1B.2C.$2\sqrt{3}$D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.y=tanx的導(dǎo)數(shù)是( 。
A.$\frac{1}{{{{cos}^2}x}}$B.$-\frac{1}{{{{cos}^2}x}}$C.$\frac{cos2x}{{{{cos}^2}x}}$D.$-\frac{cos2x}{{{{cos}^2}x}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.若x>0,y>0,且$\frac{2}{x}$+$\frac{8}{y}$=1,求xy及x+y的最小值,何時(shí)取到?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知直線l:$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}\right.$(t為參數(shù),α為l的傾斜角),曲線C的極坐標(biāo)方程為ρ2-6ρcosθ+5=0
(1)若直線l與曲線C相切,求α的值;
(2)設(shè)曲線C上任意一點(diǎn)為P(x,y),求x+y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下列命題錯(cuò)誤的是(  )
A.命題“若m>0,則方程x2+x-m=0有實(shí)數(shù)根”的逆否命題為:“若方程x2+x-m=0無(wú)實(shí)數(shù)根,則m≤0”.
B.對(duì)于命題p:?x∈R,使得x2+x+1<0,則¬p:?x∈R,均有x2+x+1≥0.
C.若p∧q為假命題,則p,q中至少一個(gè)為假命題.
D.“$θ=2kπ+\frac{π}{6}$”是“$sinθ=\frac{1}{2}$”的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在直角坐標(biāo)系xOy中,曲線C1的點(diǎn)均在C2:x2+(y-5)2=9外,且對(duì)C1上任意一點(diǎn)M,M到直線y=-2的距離等于該點(diǎn)與圓C2上點(diǎn)的距離的最小值.
(1)求曲線C1的方程;
(2)設(shè)P(x0,y0)(x0≠±3)為圓C2外一點(diǎn),過(guò)P作圓C2的兩條切線,分別與曲線C1相交于點(diǎn)A,B和C,D.證明:當(dāng)P在直線y=-4上運(yùn)動(dòng)時(shí),四點(diǎn)A,B,C,D的橫坐標(biāo)之積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若將θ視為變量,則以原點(diǎn)為圓心,r為半徑的圓可表示為$\left\{\begin{array}{l}{x=rcosθ}\\{y=rsinθ}\end{array}\right.$(θ∈[0,2π)),問(wèn)下列何種表示可表示以(a,b)為圓心,r為半徑的圓( 。
A.$\left\{\begin{array}{l}{x=rcosθ-a}\\{y=rsinθ-b}\end{array}\right.$(θ∈[0,2π))B.$\left\{\begin{array}{l}{x=rcosθ+a}\\{y=rsinθ+b}\end{array}\right.$(θ∈[0,2π))
C.$\left\{\begin{array}{l}{x=-rcosθ-a}\\{y=-rsinθ-b}\end{array}\right.$(θ∈[0,2π))D.$\left\{\begin{array}{l}{x=rsinθ-a}\\{y=rcosθ-b}\end{array}\right.$(θ∈[0,2π))

查看答案和解析>>

同步練習(xí)冊(cè)答案