9.已知雙曲線與$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的一條漸近線被圓(x-c)2+y2=4a2截得弦長(zhǎng)為2b(雙曲線的焦距2c),則該雙曲線的離心率為$\sqrt{3}$.

分析 求得雙曲線的漸近線方程,利用點(diǎn)到直線的距離公式,求得a與b的關(guān)系,利用雙曲線的離心率公式即可求得雙曲線的離心率.

解答 解:雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的一條漸近線方程為bx+ay=0,
圓(x-c)2+y2=4a2的圓心(c,0)到雙曲線的漸近線的距離為:$\frac{bc}{\sqrt{{a}^{2}+^{2}}}$=b,
∵漸近線被圓(x-c)2+y2=4a2截得的弦長(zhǎng)為2b,
∴b2+b2=4a2,
∴b2=2a2,即c2=3a2,
∴e=$\frac{c}{a}$=$\sqrt{3}$.
故答案為:$\sqrt{3}$.

點(diǎn)評(píng) 本題考查雙曲線的漸近線方程及離心率的求法,點(diǎn)到直線的距離公式,考查計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.某小區(qū)一號(hào)樓共有7層,每層只有1家住戶,已知任意相鄰兩層樓的住戶在同一天至多一家有快遞,且任意相鄰三層樓的住戶在同一天至少一家有快遞,則在同一天這7家住戶有無快遞的可能情況共有種12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.利用反證法證明:“若x2+y2=0,則x=y=0”時(shí),假設(shè)為( 。
A.x,y都不為0B.x≠y且x,y都不為0C.x≠y且x,y不都為0D.x,y不都為0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦點(diǎn)分別為F1(-1,0),F(xiàn)2(1,0),上頂點(diǎn)為A,過A與AF2垂直的直線交x軸負(fù)半軸于Q點(diǎn),且F1為QF2的中點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過F2的直線l與C交于不同的兩點(diǎn)M、N,則△F1MN的內(nèi)切圓的面積是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)的直線方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若集合A={x∈Z|-2<x<2},B={x|y=log2x2},則A∩B=( 。
A.{-1,1}B.{-1,0,1}C.{1}D.{0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在數(shù)列{an}中,已知a1=0,an+2-an=2,則a7的值為(  )
A.9B.15C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知數(shù)列{an}中,${a_1}=1,{a_{n+1}}=\frac{a_n}{{{a_n}+2}}(n∈{N^*})$
(Ⅰ)求證:$\left\{{\frac{1}{a_n}+1}\right\}$是等比數(shù)列,并求{an}的通項(xiàng)公式an
(Ⅱ)數(shù)列{bn}滿足${b_n}=({2^n}-1)•\frac{n}{{{2^{n-1}}}}•{a_n}$,數(shù)列{bn}的前n項(xiàng)和為Tn,若不等式${(-1)^n}λ<{T_n}+\frac{n}{{{2^{n-1}}}}$對(duì)一切n∈N*恒成立,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知自然數(shù)x滿足3A${\;}_{x+1}^{3}$-2A${\;}_{x+2}^{2}$=6A${\;}_{x+1}^{2}$,則x(  )
A.3B.5C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知(3-4i)$\overline{z}$=i101(其中$\overline z$為z的共軛復(fù)數(shù),i為虛數(shù)單位),則復(fù)數(shù)z的虛部為( 。
A.$\frac{3i}{25}$B.-$\frac{3}{25}$C.$\frac{3}{25}$D.-$\frac{4}{25}$

查看答案和解析>>

同步練習(xí)冊(cè)答案