分析 (Ⅰ)求出f(x)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;
(Ⅱ)求出函數(shù)的導(dǎo)數(shù),求出B處的切線方程,根據(jù)函數(shù)的單調(diào)性求出a的范圍即可.
解答 解:(Ⅰ)由已知f(x)=h(x)+3xg(x)=ax3-1+3xlnx,
又f(x)過點(1,-1),所以a=0,
∴f(x)=3xlnx-1,且定義域為(0,+∞),
f′(x)=3lnx+3=3(lnx+1),
令f′(x)>0,解得:x>$\frac{1}{e}$,令f′(x)<0,解得:0<x<$\frac{1}{e}$,
故f(x)=3xlnx-1在(0,$\frac{1}{e}$)上是減函數(shù),在($\frac{1}{e}$,+∞)上是增函數(shù).…(4分)
(Ⅱ)函數(shù)F(x)=(a-$\frac{1}{3}$)x3+$\frac{1}{2}$x2g(a)-h(x)-1,
F(x)=-$\frac{1}{3}$x3+$\frac{1}{2}$x2lna,
①由已知切點為B(x0,-$\frac{1}{3}$${{x}_{0}}^{3}$+$\frac{1}{2}$${{x}_{0}}^{2}$lna),
F′(x)=-x2+xlna,F(xiàn)′(x0)=-${{x}_{0}}^{2}$+x0lna,
則B處的切線方程為:
y-(-$\frac{1}{3}$${{x}_{0}}^{3}$+$\frac{1}{2}$${{x}_{0}}^{2}$lna)=(-${{x}_{0}}^{2}$+x0lna)(x-x0),將A點坐標代入得
m-(-$\frac{1}{3}$${{x}_{0}}^{3}$+$\frac{1}{2}$${{x}_{0}}^{2}$lna)=(-${{x}_{0}}^{2}$+x0lna)(1-x0),
所以m=$\frac{2}{3}$${{x}_{0}}^{3}$-(1+$\frac{1}{2}$lna)${{x}_{0}}^{2}$+x0lna,(*) …(8分)
②據(jù)題意,原命題等價于關(guān)于x0的方程(*)至少有2個不同的解.
設(shè)φ(x)=$\frac{2}{3}$x3-(1+$\frac{1}{2}$lna)x2+xlna,
φ′(x)=2x2-(2+lna)x+lna=(x-1)(2x-lna),
因為a>${e}^{\frac{10}{3}}$,所以$\frac{1}{2}$lna>$\frac{5}{3}$>1,
當x∈(-∞,1)和($\frac{1}{2}$lna,+∞)時,φ′(x)>0,φ(x)為增函數(shù);
當x∈(1,$\frac{1}{2}$lna)時,φ′(x)<0,φ(x)為減函數(shù);
所以φ(x)的極大值為φ(1)=$\frac{1}{2}$lna-$\frac{1}{3}$,
φ(x)的極小值為φ($\frac{1}{2}$lna)=-$\frac{1}{24}$ln3a+$\frac{1}{4}$ln2a,
設(shè)lna=t,t>$\frac{10}{3}$,
則原命題等價于$\left\{\begin{array}{l}{m≤\frac{1}{2}lna-\frac{1}{3}=\frac{1}{2}t-\frac{1}{3}}\\{m≥-{\frac{1}{24}ln}^{3}a+{\frac{1}{4}ln}^{2}a=-{\frac{1}{24}t}^{3}+{\frac{1}{4}t}^{2}}\end{array}\right.$對t>$\frac{10}{3}$恒成立,…(12分)
所以由m≤$\frac{1}{2}$t-$\frac{1}{3}$對t>$\frac{10}{3}$恒成立,得m≤$\frac{4}{3}$; (1)
記s(t)=-$\frac{1}{24}$t3+$\frac{1}{4}$t2,s′(t)=-$\frac{1}{8}$t2+$\frac{1}{2}$t=$\frac{1}{2}$t(1-$\frac{1}{4}$t),
所以t>$\frac{10}{3}$時,s(t)的最大值為s(4)=$\frac{4}{3}$,由m≥-$\frac{1}{24}$t3+$\frac{1}{4}$t2對t>$\frac{10}{3}$恒成立,得m≥$\frac{4}{3}$. (2)
由(1)(2)得,m=$\frac{4}{3}$.
綜上,當a>${e}^{\frac{10}{3}}$,實數(shù)m的值為$\frac{4}{3}$時,函數(shù)F(x)過點A(1,m)的切線至少有2條.…(14分)
點評 本題考查了切線方程問題,函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,是一道綜合題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ∅ | B. | [1,+∞) | C. | (0,2] | D. | (0,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{c}$=3$\overrightarrow{a}$-$\overrightarrow$ | B. | $\overrightarrow{c}$=3$\overrightarrow$-$\overrightarrow{a}$ | C. | $\overrightarrow{c}$=$\frac{3}{2}$$\overrightarrow$-$\frac{1}{2}$$\overrightarrow{a}$ | D. | $\overrightarrow{c}$=$\frac{3}{2}$$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -4,-10 | B. | 4,-10 | C. | 10,4 | D. | 不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com