16.已知集合P={x∈N|1≤x<10},集合Q={x∈R|x2+x-6=0},則P∩Q=( 。
A.{2}B.{3}C.{-2,3}D..{-3,2}

分析 列舉出P中不等式的自然數(shù)解確定出P,求出Q中方程的解確定出Q,找出兩集合的交集即可.

解答 解:∵P={x∈N|1≤x<10}={1,2,3,4,5,6,7,8,9},
集合Q={x∈R|x2+x-6=0}={-3,2},
∴P∩Q={2},
故選:A.

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖所示,已知OA⊥?ABCD所在的平面,P、Q分別是AB,OC的中點(diǎn),求證:PQ∥平面OAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知$\sqrt{x}$,$\frac{\sqrt{f(x)}}{2}$,$\sqrt{3}$(x≥0)成等差數(shù)列.又?jǐn)?shù)列{an}(an>0)中,a1=3,此數(shù)列的前n項(xiàng)的和Sn(n∈N*)對(duì)所有大于1的正整數(shù)n都有Sn=f(Sn-1).
(1)求數(shù)列{an}的第n+1項(xiàng);
(2)若$\sqrt{_{n}}$是$\frac{1}{{a}_{n+1}}$,$\frac{1}{{a}_{n}}$的等比中項(xiàng),且Tn為{bn}的前n項(xiàng)和,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.向量$\overrightarrow a$=(cosθ,sinθ),$\overrightarrow b$=(1,$\sqrt{3}$),則|${\overrightarrow a$-2$\overrightarrow b}$|的取值范圍是[3,5].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知$\frac{π}{2}$<α<π,3sin2α=2cosα,則cos(π-α)的值為( 。
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.$\frac{{2\sqrt{2}}}{3}$D.$-\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知A=60°,b=2,S△ABC=2$\sqrt{3}$,則$\frac{a+b+c}{sinA+sinB+sinC}$=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知點(diǎn)O是銳角△ABC的外心,a,b,c分別為內(nèi)角A、B、C的對(duì)邊,A=$\frac{π}{4}$,且$\frac{cosB}{sinC}$$\overrightarrow{AB}$+$\frac{cosC}{sinB}$$\overrightarrow{AC}$=λ$\overrightarrow{OA}$,則λ的值為( 。
A.$\frac{{\sqrt{2}}}{2}$B.-$\frac{{\sqrt{2}}}{2}$C.$\sqrt{2}$D.-$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.等比數(shù)列{an}的前n項(xiàng)和Sn=$\frac{1}{2}$3n+1-a,則a等于( 。
A.$\frac{3}{2}$B.$-\frac{3}{2}$C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若函數(shù)f(x)=cos(2x+$\frac{π}{6}$)的圖象向右平移φ(φ>0)個(gè)單位后所得的函數(shù)為奇函數(shù),則φ的最小值為$\frac{π}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案