分析 (1)將直線方程代入橢圓方程,由韋達(dá)定理及向量數(shù)量積的坐標(biāo)運(yùn)算,即可求得p,求得拋物線方程;
(2)由(1)可知,利用弦長公式即可求得弦長|AB|.
解答 解:(1)設(shè)A(x1,y1),B(x2,y2),
由$\left\{\begin{array}{l}{{x}^{2}=2py}\\{y=kx+2}\end{array}\right.$,整理得x2-2pkx-4p=0,
其中△=4p2k2+16p>0,
則x1+x2=2pk,x1x2=-4p,
∴$\overrightarrow{OA}$•$\overrightarrow{OB}$=x1x2+y1y2=x1x2+$\frac{{x}_{1}^{2}}{2p}$•$\frac{{x}_{2}^{2}}{2p}$=-4p+4,
由已知,-4p+4=2,解得p=$\frac{1}{2}$,
∴拋物線E的方程為x2=y;
(2)由(1)可知:x1+x2=1,x1x2=-2,
則丨AB丨=$\sqrt{1+{k}^{2}}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=3$\sqrt{2}$,
弦長|AB|=3$\sqrt{2}$.
點(diǎn)評(píng) 本題考查直線與拋物線的位置關(guān)系,考查拋物線的標(biāo)準(zhǔn)方程,韋達(dá)定理,弦長公式及向量數(shù)量積的坐標(biāo)運(yùn)算,考查計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
參加運(yùn)動(dòng) | 不參加運(yùn)動(dòng) | 合計(jì) | |
男大學(xué)生 | 20 | 8 | 28 |
女大學(xué)生 | 12 | 16 | 28 |
合計(jì) | 32 | 24 | 56 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,-2),r=2 | B. | (1,-2),$r=\sqrt{2}$ | C. | (-1,2),r=2 | D. | (-1,2),$r=\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f'(x)=a | B. | f'(x)=b | C. | f'(x0)=a | D. | f'(x0)=b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $-\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5:1 | B. | 2:1 | C. | 4:1 | D. | $\sqrt{3}$:1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com