15.若命題“?x0∈R,使得x2+2x+a≤0”是假命題,則實(shí)數(shù)a的取值范圍是(1,+∞).

分析 命題“?x0∈R,使得x2+2x+a≤0”是假命題,則命題“?x∈R,使得x2+2x+a>0”是真命題,可得:△<0,解出a的范圍.

解答 解:命題“?x0∈R,使得x2+2x+a≤0”是假命題,
則命題“?x∈R,使得x2+2x+a>0”是真命題,
∴△=4-4a<0,解得a>1.
實(shí)數(shù)a的取值范圍是:(1,+∞).
故答案為:(1,+∞).

點(diǎn)評(píng) 本題考查了簡(jiǎn)易邏輯的判定方法、不等式的解法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖,$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$為互相垂直的單位向量,則向量$\overrightarrow{a}$-$\overrightarrow$=( 。
A.3$\overrightarrow{{e}_{2}}$-$\overrightarrow{{e}_{1}}$B.-2$\overrightarrow{{e}_{1}}$-4$\overrightarrow{{e}_{2}}$C.$\overrightarrow{{e}_{1}}$-3$\overrightarrow{{e}_{2}}$D.3$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.定義域?yàn)镽的函數(shù)f(x)滿足f(0)=1,f′(x)<f(x)+1,則不等式$\frac{f(x)+1}{{e}^{x}}$<2的解集為(0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.給出定義:設(shè)f′(x)是函數(shù)y=f(x)的導(dǎo)函數(shù),f″(x)是函數(shù)y=f′(x)的導(dǎo)函數(shù),若方程f″(x0)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”,已知函數(shù)f(x)=3x+asinx-bcosx的拐點(diǎn)是M(x0,f(x0)),則點(diǎn)M( 。
A.在直線y=-3x上B.在直線y=3x上C.在直線y=-4x上D.在直線y=4x上

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某高校通過調(diào)查在發(fā)現(xiàn)該校畢業(yè)生的學(xué)習(xí)成績(jī)與就業(yè)情況具有線性相關(guān)關(guān)系,現(xiàn)對(duì)5名畢業(yè)生的數(shù)據(jù)進(jìn)行分析,他們的專業(yè)課成績(jī)xi及現(xiàn)在的工作年薪y(tǒng)i情況如下:
專業(yè)課成績(jī)xi(分)77899
年薪y(tǒng)i(萬元)1012141415
(1)根據(jù)表中數(shù)據(jù),計(jì)算專業(yè)課成績(jī)與年薪的線性相關(guān)系數(shù);
(2)求出專業(yè)課成績(jī)與年薪關(guān)系的線性回歸方程,并預(yù)測(cè)專業(yè)課成績(jī)?yōu)?.6分的學(xué)生畢業(yè)后的年薪;
(3)若再從這5名畢業(yè)生中隨機(jī)抽取2名進(jìn)行詳細(xì)調(diào)查,求恰有一名畢業(yè)生的專業(yè)課成績(jī)不少于9分的概率.附:r=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sqrt{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}•\sqrt{\sum_{i=1}^{n}{y}_{i}^{2}-n{\overline{y}}^{2}}}$,b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知a∈R,函數(shù)$f(x)=\frac{{{e^x}-a}}{x}-alnx$(e=2.71828…是自然對(duì)數(shù)的底數(shù)).
(Ⅰ)函數(shù)f(x)是否存在極大值,若存在,求極大值點(diǎn),若不存在,說明理由;
(Ⅱ)設(shè)$g(x)=\frac{e^x}{1+xlnx}$,證明:對(duì)任意x>0,g(x)>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.直線mx+ny=1與圓x2+y2=4的交點(diǎn)為整點(diǎn)(橫縱坐標(biāo)均為正數(shù)的點(diǎn)),這樣的直線的條數(shù)是(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在△ABC中$A=\frac{π}{3},b+c=4,E、F$為邊BC的三等分點(diǎn),則$\overrightarrow{AE}$•$\overrightarrow{AF}$的最小值為( 。
A.$\frac{{9\sqrt{3}}}{2}$B.$\frac{8}{3}$C.$\frac{26}{9}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)U=R,A={x|mx2+8mx+21>0},∁UA=∅,則m的取值范圍是(  )
A.[0,$\frac{21}{16}$)B.{0}∪($\frac{21}{16}$,+∞)C.(-∞,0]D.(-∞,0]∪($\frac{21}{16}$,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案