9.(1)數(shù)列{an}滿足關(guān)系anan+1=1-an+1(n∈N*),且a2010=2,則a2008=-3.
(2)數(shù)列{an}中,a1=1,an+1=2an+1,則{an}的通項(xiàng)公式為2n-1.

分析 (1)數(shù)列{an}滿足關(guān)系anan+1=1-an+1(n∈N*),且a2010=2,可得:2a2009=1-2,解得a2009.同理可得a2008
(2)數(shù)列{an}中,a1=1,an+1=2an+1,變形為:an+1+1=2(an+1),利用等比數(shù)列的通項(xiàng)公式即可得出.

解答 解:(1)數(shù)列{an}滿足關(guān)系anan+1=1-an+1(n∈N*),且a2010=2,2a2009=1-2,解得a2009=-$\frac{1}{2}$.
∴$-\frac{1}{2}{a}_{2008}$=1-(-$\frac{1}{2}$),解得a2008=-3.
(2)數(shù)列{an}中,a1=1,an+1=2an+1,變形為:an+1+1=2(an+1),
∴數(shù)列{an+1}是等比數(shù)列,首項(xiàng)為2,公比為2.
則an=2n-1.
故答案為:-3,2n-1.

點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式、數(shù)列遞推關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.一組數(shù)據(jù)共40個(gè),分為6組,第1組到第4組的頻數(shù)分別為10,5,7,6,第5組的頻率為0.1,則第6組的頻數(shù)為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知M(4,0),N(1,0),曲線C上的任意一點(diǎn)P滿足:$\overrightarrow{MN}$•$\overrightarrow{MP}$=6|$\overrightarrow{PN}$|
(Ⅰ)求點(diǎn)P的軌跡方程;
(Ⅱ)過點(diǎn)N(1,0)的直線與曲線C交于A,B兩點(diǎn),交y軸于H點(diǎn),設(shè)$\overrightarrow{MN}$=λ1$\overrightarrow{AN}$,$\overrightarrow{HB}$=λ2$\overrightarrow{BN}$,試問λ12是否為定值?如果是定值,請(qǐng)求出這個(gè)定值;如果不是定值,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.(1)已知$cos(\frac{π}{6}-α)=\frac{{\sqrt{3}}}{2}$求$cos(\frac{5}{6}π+α)-{sin^2}(-α+\frac{7π}{6})$的值.
(2)若cosα=$\frac{2}{3}$,α是第四象限角,求$\frac{sin(α-2π)+sin(-α-3π)cos(α-3π)}{cos(π-α)-cos(-π-α)cos(α-4π)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.過圓x2+y2=4外一點(diǎn)M(4,-1)引圓的兩條切線,則經(jīng)過兩切點(diǎn)的直線方程是(  )
A.4x-y-4=0B.4x+y-4=0C.4x+y+4=0D.4x-y+4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某高校調(diào)查詢問了56名男女大學(xué)生在課余時(shí)間是否參加運(yùn)動(dòng),得到下表所示的數(shù)據(jù).從表中數(shù)據(jù)分析,有多大把握認(rèn)為大學(xué)生的性別與參加運(yùn)動(dòng)之間有關(guān)系.
參加運(yùn)動(dòng)不參加運(yùn)動(dòng)合計(jì)
男大學(xué)生20828
女大學(xué)生121628
合計(jì)322456

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知圓的一般方程為x2+y2-2x+4y+3=0,則圓心C的坐標(biāo)與半徑分別是(  )
A.(1,-2),r=2B.(1,-2),$r=\sqrt{2}$C.(-1,2),r=2D.(-1,2),$r=\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)函數(shù)f(x)在點(diǎn)x0附近有定義,且有f(x0+△x)-f(x0)=a△x+b(△x)2,其中a,b為常數(shù),則(  )
A.f'(x)=aB.f'(x)=bC.f'(x0)=aD.f'(x0)=b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在${({{x^2}+\frac{2}{{\sqrt{x}}}})^{10}}$的展開式中,x15的系數(shù)為180.

查看答案和解析>>

同步練習(xí)冊(cè)答案