分析 (1)求出函數(shù)的導(dǎo)數(shù),通過(guò)討論a的范圍求出函數(shù)的單調(diào)區(qū)間即可;
(2)問(wèn)題轉(zhuǎn)化為f(x)在[1,+∞)上的最小值f(x)min<$\frac{a}{a-1}$,通過(guò)討論a的范圍,求出f(x)的最小值,從而確定a的范圍即可.
解答 解:(1)由題意得:f′(x)=$\frac{(x-1)[(1-a)x-a]}{x}$,x>0,
令f′(x)=0,解得:x=1或x=$\frac{a}{1-a}$,
①$\frac{a}{1-a}$≤0即a≤0或a>1時(shí),
(i)a≤0時(shí),f(x)在(0,1)遞減,在(1,+∞)遞增,
(ii)a>1時(shí),f(x)在(0,1)遞增,在(1,+∞)遞減;
②0<$\frac{a}{1-a}$<1即0<a<$\frac{1}{2}$時(shí),
f(x)在(0,$\frac{a}{1-a}$)和(1,+∞)遞增,在($\frac{a}{1-a}$,1)遞減;
③$\frac{a}{1-a}$=1即a=$\frac{1}{2}$時(shí),f(x)在(0,+∞)遞增;
④$\frac{a}{1-a}$>1即$\frac{1}{2}$<a<1時(shí),
f(x)在(0,1)和($\frac{a}{1-a}$,+∞)遞增,在(1,$\frac{a}{1-a}$)遞減;
(2)由題意得:
f(x)在[1,+∞)上的最小值f(x)min<$\frac{a}{a-1}$,
由(1)得:①a≤$\frac{1}{2}$時(shí),f(x)在(1,+∞)遞增,
∴f(x)min=f(1)=-$\frac{a+1}{2}$<$\frac{a}{a-1}$,
∴-$\sqrt{2}$-1<a<$\sqrt{2}$-1;
②$\frac{1}{2}$<a<1時(shí),f(x)在(1,$\frac{a}{1-a}$)遞減,在($\frac{a}{1-a}$,+∞)遞增,
∴f(x)min=f($\frac{a}{1-a}$)=aln$\frac{a}{1-a}$+$\frac{{a}^{2}}{2(1-a)}$-$\frac{a}{1-a}$<$\frac{a}{a-1}$,
∴l(xiāng)n$\frac{a}{1-a}$+$\frac{a}{2(1-a)}$<0,令t=$\frac{a}{1-a}$($\frac{1}{2}$<a<1),則t>1,
設(shè)g(t)=lnt+$\frac{1}{2}$t(t>1),則g(t)>g(1)=$\frac{1}{2}$>0,此時(shí)a無(wú)解;
③a>1時(shí),f(x)在(1,+∞)遞減,
∴f(x)<f(1)=-$\frac{a+1}{2}$<0,符合題意,
綜上,a的范圍是(-$\sqrt{2}$-1,$\sqrt{2}$-1)∪(1,+∞).
點(diǎn)評(píng) 本題考查了判斷函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及分類(lèi)討論思想,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2a-1 | B. | 2a+1 | C. | 1-2-a | D. | 1+2-a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com