17.設(shè)命題p:函數(shù)y=f(x)不是偶函數(shù),命題q:函數(shù)y=f(x)是單調(diào)函數(shù),則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

分析 由q⇒p,反之不成立.例如取f(x)=(x-1)2不是偶函數(shù),但是此函數(shù)在R上不單調(diào).

解答 解:命題p:函數(shù)y=f(x)不是偶函數(shù),命題q:函數(shù)y=f(x)是單調(diào)函數(shù),
則q⇒p,反之不成立.例如f(x)=(x-1)2不是偶函數(shù),但是此函數(shù)在R上不單調(diào).
則p是q的必要不充分條件.
故選:B.

點評 本題考查了函數(shù)的奇偶性單調(diào)性、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.曲線C的極坐標(biāo)方程為:ρ=2cosθ,曲線T的參數(shù) 方程為$\left\{\begin{array}{l}x=-t+1\\ y=2t+1\end{array}\right.$(t為參數(shù)),則曲線C與T的公共點有2個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1)上一點M也在直線y=$\frac{1-{a}^{2}}{1+{a}^{2}}$上,M與N(0,1)兩點所在直線過橢圓C的一個焦點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知P(x0,y0)是橢  圓C上一點,若過點($\frac{{x}_{0}}{3}$,-$\frac{{y}_{0}}{3}$)的直線與橢圓C有兩個異于P的交點A,B,求證:PA丄PB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.將圓的六個等分點分成相同的兩組,它們每組三個點構(gòu)成的兩個正三角形除去內(nèi)部的六條線段后可以形成一個正六角星.如圖所示的正六角星的中心為點O,其中x,y分別為點O到兩個頂點的向量.若將點O到正六角星12個頂點的向量都寫成ax+by的形式,則a+b的最大值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某同學(xué)在運動場所發(fā)現(xiàn)一實心椅子,其三視圖如圖所示(俯視圖是圓的一部分及該圓的兩條互相垂直的半徑,有關(guān)尺寸如圖,單位:m),經(jīng)了解,建造該類椅子的平均成本為240元/m3,那么該椅子的建造成本約為(π≈3.14)( 。
A.94.20元B.240.00元C.282.60元D.376.80元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=|2x-2|+b的兩個零點分別為x1,x2(x1>x2),則下列結(jié)論正確的是( 。
A.1<x1<2,x1+x2<2B.1<x1<2,x1+x2<1C.x1>1,x1+x2<2D.x1>1,x1+x2<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在直角坐標(biāo)系xOy中,以O(shè)為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C:ρ2-4ρcosθ+1=0,直線l:$\left\{\begin{array}{l}{x=4+tsinα}\\{y=tcosα}\end{array}\right.$(t為參數(shù),0≤α<π).
(1)求曲線C的參數(shù)方程;
(2)若直線l與曲線C相切,求直線l的傾斜角及切點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{{\sqrt{3}}}{3}$,過左焦點任作直線l,交橢圓的上半部分于點M,當(dāng)l的斜率為$\frac{{\sqrt{3}}}{3}$時,|FM|=$\frac{{4\sqrt{3}}}{3}$.
(1)求橢圓C的方程;
(2)橢圓C上兩點A,B關(guān)于直線l對稱,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在平行四邊形ABCD中,∠BAD=60°,E是CD上一點,且$\overrightarrow{AE}$=$\frac{1}{2}$$\overrightarrow{AB}$+$\overrightarrow{BC}$,|$\overrightarrow{AB}$|=λ|$\overrightarrow{AD}$|.若$\overrightarrow{AC}$•$\overrightarrow{EB}$=$\frac{1}{2}$$\overrightarrow{AD}$2,則λ等于( 。
A.$\frac{1}{2}$B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

同步練習(xí)冊答案