A. | $\frac{4}{9}$ | B. | $\frac{5}{9}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{3}$ |
分析 基本事件總數(shù)為n=3×3=9,兩次抽取的卡片號碼都為奇數(shù)包含的基本事件個數(shù)m=2×2=4,由此利用對立事件概率計算公式能求出兩次抽取的卡片號碼中至少有一個為偶數(shù)的概率.
解答 解:盒中有3張分別標有1,2,3的卡片.從盒中隨機抽取一張記下號碼后放回,再隨機抽取一張記下號碼,
基本事件總數(shù)為n=3×3=9,
兩次抽取的卡片號碼都為奇數(shù)包含的基本事件個數(shù)m=2×2=4,
∴兩次抽取的卡片號碼中至少有一個為偶數(shù)的概率為:
p=1-$\frac{m}{n}$=1-$\frac{4}{9}=\frac{5}{9}$.
故選:B.
點評 本題考查概率的求法,是基礎題,解題時要認真審題,注意對立事件概率計算公式的合理運用.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $arcsin\frac{1}{3}$ | B. | $-\frac{π}{2}-arcsin(-\frac{1}{3})$ | C. | $-π+arcsin(-\frac{1}{3})$ | D. | $-π-arcsin(-\frac{1}{3})$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ${(x-2)^2}+{(y+\frac{3}{2})^2}=\frac{25}{4}$ | B. | ${(x-2)^2}+{(y-\frac{3}{2})^2}=\frac{25}{4}$ | ||
C. | ${(x+2)^2}+{(y-\frac{3}{2})^2}=\frac{25}{4}$ | D. | ${(x+2)^2}+{(y+\frac{3}{2})^2}=\frac{25}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com