15.已知圓x2+y2-2x-8y+1=0的圓心到直線ax-y+1=0的距離為1,則a=$\frac{4}{3}$.

分析 由圓x2+y2-2x-8y+1=0的圓心到直線ax-y+1=0的距離為1,利用點(diǎn)到直線距離公式能求出a的值.

解答 解:圓x2+y2-2x-8y+1=0的圓心C(1,4),
∵圓x2+y2-2x-8y+1=0的圓心到直線ax-y+1=0的距離為1,
∴d=$\frac{|a-4+1|}{\sqrt{{a}^{2}+1}}$=1,
解得a=$\frac{4}{3}$.
故答案為:$\frac{4}{3}$.

點(diǎn)評(píng) 本題考查實(shí)數(shù)值的求法,考查圓、直線方程、點(diǎn)到直線距離公式等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查函數(shù)與方程思想、化歸與轉(zhuǎn)化思想,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.為了政府對(duì)過熱的房地產(chǎn)市場進(jìn)行調(diào)控決策,統(tǒng)計(jì)部門對(duì)城市人和農(nóng)村人進(jìn)行了買房的心理預(yù)期調(diào)研,用簡單隨機(jī)抽樣的方法抽取110人進(jìn)行統(tǒng)計(jì),得到如下列聯(lián)表:
買房不買房糾結(jié)
城市人515
農(nóng)村人2010
已知樣本中城市人數(shù)與農(nóng)村人數(shù)之比是3:8.
(1)分別求樣本中城市人中的不買房人數(shù)和農(nóng)村人中的糾結(jié)人數(shù);
(2)用獨(dú)立性檢驗(yàn)的思想方法說明在這三種買房的心理預(yù)期中哪一種與城鄉(xiāng)有關(guān)?
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(b+d)}$.
P(k2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.89710.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若角θ滿足$cosθ+sinθ=\frac{1}{2}$,則角θ是( 。
A.第一項(xiàng)限角或第二象限角B.第二象限角或第四象限角
C.第一象限角或第三象限角D.第二象限角或第三象限角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知數(shù)列{an}為等比數(shù)列,若a2=2,a10=8,則a6=( 。
A.±4B.-4C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若f(x)=2xf'(1)+x2,則f'(0)=( 。
A.$\frac{1}{2}$B.6C.-2D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.給出下列四個(gè)結(jié)論:
①${∫}_{-a}^{a}$(x2+sinx)dx=18,則a=3;
②用相關(guān)指數(shù)R2來刻畫回歸效果,R2的值越大,說明模型的擬合效果越差;
③若f(x)是定義在R上的奇函數(shù),且滿足f(x+2)=-f(x),則函數(shù)f(x)的圖象關(guān)于x=1對(duì)稱;
④已知隨機(jī)變量ξ服從正態(tài)分布N(1,σ2),P(ξ≤4)=0.79,則P(ξ<-2)=0.21;
其中正確結(jié)論的序號(hào)為①③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若函數(shù)f(x)滿足:當(dāng)x<1時(shí),f(x)=($\frac{1}{2}$)x;當(dāng)x≥1時(shí),f(x+1)=-f(x),則f(2017+log23)=( 。
A.$\frac{1}{12}$B.$\frac{1}{8}$C.$\frac{3}{8}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知sinθ=-$\frac{3}{4}$且θ為第四象限角,則tan(π-θ)=( 。
A.-$\frac{3\sqrt{7}}{7}$B.$\frac{3\sqrt{7}}{7}$C.$\frac{\sqrt{7}}{3}$D.-$\frac{\sqrt{7}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在平面直角坐標(biāo)系xOy中,動(dòng)點(diǎn)S到點(diǎn)F(1,0)的距離與到直線x=2的距離的比值為$\frac{{\sqrt{2}}}{2}$.
(Ⅰ)求動(dòng)點(diǎn)S的軌跡E的方程;
(Ⅱ)設(shè)點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn),過P作斜率為$\frac{{\sqrt{2}}}{2}$的直線l交軌跡E于A,B兩點(diǎn),求證:|PA|2+|PB|2為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案