2.設(shè)m,n是不同的直線,α,β是不同的平面,有以下四個(gè)命題(  )
A.若m∥α,n∥α,則m∥nB.若m⊥α,α⊥β,則m∥βC.若m∥α,α⊥β,則m⊥βD.若m⊥α,α∥β,則m⊥β

分析 對(duì)4個(gè)命題分別進(jìn)行判斷,即可得出結(jié)論.

解答 解:對(duì)于A,若m∥α,n∥α,則m∥n或相交、異面,不正確;
對(duì)于B,∵α⊥β,∴設(shè)α∩β=a,在平面β內(nèi)作直線b⊥a,則b⊥α,∵m⊥α,∴m∥b,
若m?β,則m∥β,若m?β,也成立.∴m∥β或m?β,不正確;
對(duì)于C,若m∥α,α⊥β,則m與β共線不確定,不正確;
對(duì)于D,根據(jù)平面與平面平行的性質(zhì)定理,可得結(jié)論成立,正確.
故選D.

點(diǎn)評(píng) 本題主要考查對(duì)空間點(diǎn)、線、面位置關(guān)系的概念、定理的理解和應(yīng)用,考查特例反駁和結(jié)論證明,特別是把空間平行關(guān)系和垂直關(guān)系的相關(guān)定理中抽掉一些條件的命題,其目的是考查考生對(duì)這些定理掌握的熟練程度

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖是函數(shù)y=Asin(ωx+φ)+2(A>0,ω>0,|φ|<π)的圖象的一部分,則它的振幅、周期、初相分別是( 。
A.A=3,T=$\frac{4π}{3}$,φ=-$\frac{π}{6}$B.A=1,T=$\frac{4π}{3}$,φ=-$\frac{3π}{4}$
C.A=1,T=$\frac{4π}{3}$,φ=-$\frac{3π}{4}$D.A=1,T=$\frac{4π}{3}$,φ=-$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)x、y滿足不等式組$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-1≥0}\\{x≤2}\end{array}\right.$,則x2+y2的最小值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.f(x)=x2+lnx,則f(x)在x=1處的切線方程為3x-y-2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知{an}是首項(xiàng)為1,公差為2的等差數(shù)列.
(I)求{an}的通項(xiàng)公式及$\left\{{\frac{1}{{{a_n}{a_{n+1}}}}}\right\}$的前n項(xiàng)和;
(Ⅱ)設(shè)Sn表示{an}的前n項(xiàng)和,{bn}是首項(xiàng)為2的等比數(shù)列,公比q滿足q2-(a4+1)q+S4=0,求{bn}的通項(xiàng)公式及其前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖,M、N分別是AB、AC的一個(gè)三等分點(diǎn),且$\overrightarrow{MN}$=λ($\overrightarrow{AC}$-$\overrightarrow{AB}$)成立,則λ=( 。
A.$\frac{1}{2}$B.±$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知$f(x)=\frac{{{3^x}-1}}{{{3^x}+1}}$,則${f^{-1}}(\frac{1}{2})$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.根據(jù)下列條件確定△ABC有兩個(gè)解的是( 。
A.a=18,B=30°,A=120°B.a=60,c=48,C=120°
C.a=3,b=6,A=30°D.a=14,b=15,A=45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.直線y=xcosθ+1,(θ∈R)的傾斜角的范圍是$[0,\frac{π}{4}]$∪$[\frac{3π}{4},π)$.

查看答案和解析>>

同步練習(xí)冊(cè)答案