【題目】已知拋物線(為常數(shù),)經(jīng)過點(diǎn),其對稱軸在軸右側(cè),有下列結(jié)論:①拋物線經(jīng)過點(diǎn);②方程有兩個不相等的實數(shù)根;③.其中,正確結(jié)論的個數(shù)為( )
A.0B.1C.2D.3
【答案】C
【解析】
① 由拋物線過點(diǎn),對稱軸在軸右側(cè),即可得出當(dāng)時,結(jié)論①錯誤;
② 過點(diǎn)作軸的平行線,由該直線與拋物線有兩個交點(diǎn),可得出方程有兩個不相等的實數(shù)根,結(jié)論②正確;
③ 由當(dāng)時,可得出,由拋物線與軸交于點(diǎn),可得出,進(jìn)而即可得出,由拋物線過點(diǎn)可得出,結(jié)合,可得出,綜上可得出,結(jié)論③正確,此題得解.
① 拋物線過點(diǎn),對稱軸在軸右側(cè),
當(dāng)時,結(jié)論①錯誤;
② 過點(diǎn)作軸的平行線,如圖所示.
該直線與拋物線有兩個交點(diǎn),
方程有兩個不相等的實數(shù)根,結(jié)論②正確;
③ 當(dāng)時,
.
拋物線為常數(shù)且經(jīng)過點(diǎn),
,
.
當(dāng)時,,即,
,
.
拋物線開口向下,
,
,
,結(jié)論③正確.
故選:
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某面包店隨機(jī)收集了面包種類的有關(guān)數(shù)據(jù),經(jīng)分類整理得到下表:
面包類型 | 第一類 | 第二類 | 第三類 | 第四類 | 第五類 | 第六類 |
面包個數(shù) | 90 | 60 | 30 | 80 | 100 | 40 |
好評率 | 0.6 | 0.45 | 0.7 | 0.35 | 0.6 | 0.5 |
好評率是指:一類面包中獲得好評的個數(shù)與該類面包的個數(shù)的比值.
(1)從面包店收集的面包中隨機(jī)選取1個,求這個面包是獲得好評的第五類面包的概率;
(2)從面包店收集的面包中隨機(jī)選取1個,估計這個面包沒有獲得好評的概率;
(3)面包店為增加利潤,擬改變生產(chǎn)策略,這將導(dǎo)致不同類型面包的好評率發(fā)生變化.假設(shè)表格中只有兩類面包的好評率數(shù)據(jù)發(fā)生變化,那么哪類面包的好評率增加0.1,哪類面包的好評率減少0.1,使得獲得好評的面包總數(shù)與樣本中的面包總數(shù)的比值達(dá)到最大?(只需寫出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前項和為,已知(),且.
(1)證明為等比數(shù)列,并求數(shù)列的通項公式;
(2)設(shè),且證明;
(3)在(2)小問的條件下,若對任意的,不等式恒成立,試求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高一某班以小組為單位在周末進(jìn)行了一次社會實踐活動,且每小組有5名同學(xué),活動結(jié)束后,對所有參加活動的同學(xué)進(jìn)行測評,其中A,B兩個小組所得分?jǐn)?shù)如下表:
A組 | 86 | 77 | 80 | 94 | 88 |
B組 | 91 | 83 | ? | 75 | 93 |
其中B組一同學(xué)的分?jǐn)?shù)已被污損,看不清楚了,但知道B組學(xué)生的平均分比A組學(xué)生的平均分高出1分.
(1)若從B組學(xué)生中隨機(jī)挑選1人,求其得分超過85分的概率;
(2)從A組這5名學(xué)生中隨機(jī)抽取2名同學(xué),設(shè)其分?jǐn)?shù)分別為m,n,求的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)、,點(diǎn)是圓上一動點(diǎn),線段的垂直平分線交線段于點(diǎn),設(shè)點(diǎn)的軌跡為曲線.且直線交曲線于兩點(diǎn)(點(diǎn)在軸的上方).
(1)求曲線的方程;
(2)試判斷直線與曲線的另一交點(diǎn)是否與點(diǎn)關(guān)于軸對稱?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,,),在同一個周期內(nèi),當(dāng)時,取得最大值,當(dāng)時,取得最小值.
(1)求函數(shù)的解析式,并求在[0,]上的單調(diào)遞增區(qū)間.
(2)將函數(shù)的圖象向左平移個單位長度,再向下平移個單位長度,得到函數(shù)的圖象,方程在有2個不同的實數(shù)解,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的最小值及取到最小值時自變量x的集合;
(2)指出函數(shù)y=的圖象可以由函數(shù)y=sinx的圖象經(jīng)過哪些變換得到;
(3)當(dāng)x∈[0,m]時,函數(shù)y=f(x)的值域為,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為 (為參數(shù)).
(I)寫出直線的一般方程與曲線的直角坐標(biāo)方程,并判斷它們的位置關(guān)系;
(II)將曲線向左平移個單位長度,向上平移個單位長度,得到曲線,設(shè)曲線經(jīng)過伸縮變換得到曲線,設(shè)曲線上任一點(diǎn)為,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com