12.已知函數(shù)f(x)=alnx+x2+bx+1在點(1,f(1))處的切線方程為4x-y-12=0.
(1)求函數(shù)f(x)的解析式;
(2)求f(x)的單調區(qū)間和極值.

分析 (1)求出函數(shù)的導數(shù),計算f′(1),f(1),得到關于a,b的方程組,求出a,b的值,從而求出f(x)的解析式即可;
(2)求出函數(shù)的導數(shù),解關于導函數(shù)的不等式,求出函數(shù)的單調區(qū)間,從而求出函數(shù)的極值即可.

解答 解:(1)求導f′(x)=$\frac{a}{x}$+2x+b,由題意得:
f′(1)=4,f(1)=-8,
則$\left\{\begin{array}{l}{f(1)=b+2=-8}\\{f′(1)=a+b+2=4}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=12}\\{b=-10}\end{array}\right.$,
所以f(x)=12lnx+x2-10x+1;
(2)f(x)定義域為(0,+∞),
f′(x)=$\frac{2{(x}^{2}-5x+6)}{x}$,
令f′(x)>0,解得:x<2或x>3,
所以f(x)在(0,2)遞增,在(2,3)遞減,在(3,+∞)遞增,
故f(x)極大值=f(2)=12ln2-15,
f(x)極小值=f(3)=12ln3-20.

點評 本題考查了函數(shù)的單調性、極值問題,考查導數(shù)的應用,是一道中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

2.如圖所示,在三棱柱ABC-A1B1C1中,A1A⊥底面ABC,點A在平面A1BC中的投影為線段A1B上的點D.
(1)求證:BC⊥A1B
(2)點P為AC上一點,若AP=PC,AD=$\sqrt{3}$,AB=BC=2,求二面角P-A1B-C的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.要證明“sin4θ-cos4θ=2sin2θ-1”,過程為:“sin4θ-cos4θ=(sin2θ+cos2θ)(sin2θ-cos2θ)=sin2θ-cos2θ=sin2θ-(1-sin2θ)=2sin2θ-1”,用的證明方法是( 。
A.分析法B.反證法C.綜合法D.間接證明法

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)g(x)=x2-(2a+1)x+alnx.
(1)當a=1時,求函數(shù)g(x)的單調增區(qū)間;
(2)求函數(shù)g(x)在區(qū)間[1,e]上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.若冪函數(shù)f(x)的圖象經過點A($\frac{1}{4}$,$\frac{1}{2}$),設它在A點處的切線l,則過點A與l垂直的直線方程為4x+4y-3=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{lnx+x+1}{x}$.
(Ⅰ)求函數(shù)f(x)的單調區(qū)間;
(Ⅱ)若函數(shù)F(x)=xf(x)-$\frac{{{x^2}+x+a}}{x}$在[1,e]上是最小值為$\frac{3}{2}$,求a的值;
(Ⅲ)如果當x≥1時,不等式f(x)≥$\frac{a}{x+1}$+1恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖,已知橢圓C:$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{^{2}}=1(0<b<3)$的左、右焦點分別為F1、F2,橢圓上存在一點A,使得AF1=2AF2,且∠F1AF2=90°
(1)求橢圓C的方程;
(2)已知直線l:x=1與橢圓C交于P,Q兩點,點M為橢圓C上一動點,直線PM,QM與x軸分別交于點R,S,求證:|OR|•|OS|為常數(shù)(O為原點),并求出這個常數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=(x-k)ex(k∈R).
(1)求f(x)的單調區(qū)間和極值;
(2)求f(x)在x∈[1,2]上的最小值;
(3)設g(x)=f(x)+f′(x),若對${?^{\;}}^{\;}k∈[{\frac{3}{2},\frac{5}{2}}]$及?x∈[0,1]有g(x)≥λ恒成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=|a2x2-1|+ax,(其中a∈R,a≠0).
(1)當a<0時,若函數(shù)y=f(x)-c恰有x1,x2,x3,x4這4個零點,求x1+x2+x3+x4的值;
(2)當x∈[-1,1]時,求函數(shù)y=f(x)(其中a<0)的最大值M(a).

查看答案和解析>>

同步練習冊答案