分析 (Ⅰ)由ABCD是菱形,可得AD=DC,OD⊥AC,求解三角形可得OD=6,結(jié)合M是BC的中點(diǎn),求出OM、MD,可得OD2+OM2=MD2,得DO⊥OM,由線(xiàn)面垂直的判定可得OD⊥面ABC;
(Ⅱ)取線(xiàn)段AO的中點(diǎn)E,連接NE.可得NE∥DO.由(Ⅰ)得OD⊥面ABC,可得NE⊥面ABC,求出△ABM的面積,然后利用等積法求得三棱錐M-ABN的體積.
解答 (Ⅰ)證明:∵ABCD是菱形,∴AD=DC,OD⊥AC,
在△ADC中,AD=DC=12,∠ADC=120°,∴OD=6,
又M是BC的中點(diǎn),∴$OM=\frac{1}{2}AB=6,MD=6\sqrt{2}$,
∵OD2+OM2=MD2,則DO⊥OM,
∵OM,AC?面ABC,OM∩AC=O,
∴OD⊥面ABC;
(Ⅱ)解:取線(xiàn)段AO的中點(diǎn)E,連接NE.
∵N是棱AD的中點(diǎn),∴NE=$\frac{1}{2}DO$且NE∥DO.
由(Ⅰ)得OD⊥面ABC,∴NE⊥面ABC,
在△ABM中,AB=12,BM=6,∠ABM=120°,
∴${S}_{△ABM}=\frac{1}{2}•AB•BM•sin∠ABM$=$\frac{1}{2}×12×6×\frac{\sqrt{3}}{2}=18\sqrt{3}$.
∴${V_{M-ABN}}=\frac{1}{2}{V_{M-ABD}}=\frac{1}{2}{V_{D-ABM}}=\frac{1}{2}•\frac{1}{3}{S_{△ABM}}•OD=18\sqrt{3}$.
點(diǎn)評(píng) 本題考查直線(xiàn)與平面垂直的判定,考查空間想象能力和思維能力,訓(xùn)練了利用等積法求多面體的體積,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x±y=0 | B. | x±2y=0 | C. | x±$\sqrt{3}$y=0 | D. | 2x±y=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,2) | B. | (2,3) | C. | (3,4) | D. | (4,5) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
試銷(xiāo)單價(jià)x(元) | 4 | 5 | 6 | 7 | 8 | 9 |
產(chǎn)品銷(xiāo)量y(件) | q | 84 | 83 | 80 | 75 | 68 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\overrightarrow{CE}=\frac{2}{9}\overrightarrow{AB}+\frac{8}{9}\overrightarrow{AC}$ | B. | $\overrightarrow{CE}=\frac{2}{9}\overrightarrow{AB}-\frac{8}{9}\overrightarrow{AC}$ | C. | $\overrightarrow{CE}=\frac{2}{9}\overrightarrow{AB}+\frac{7}{9}\overrightarrow{AC}$ | D. | $\overrightarrow{CE}=\frac{2}{9}\overrightarrow{AB}-\frac{7}{9}\overrightarrow{AC}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com