5.已知橢圓C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1的左、右兩個(gè)焦點(diǎn)分別為F1、F2,離心率為$\frac{1}{2}$,且拋物線C2:y2=4mx(m>0)與橢圓C1有公共焦點(diǎn)F2(1,0).
(1)求橢圓和拋物線的方程;
(2)設(shè)A、B為橢圓上的兩個(gè)動點(diǎn),$\overrightarrow{OA}•\overrightarrow{OB}$=0,過原點(diǎn)O作直線AB的垂線OD,垂足為D,求點(diǎn)D為軌跡方程.

分析 (1)由題意可知:c=1,橢圓的離心率e=$\frac{c}{a}$=$\frac{1}{2}$,即可求得a和b的值,求得橢圓方程,F(xiàn)2(1,0)為拋物線C2:y2=4mx(m>0)的焦點(diǎn)可得m=1,
即可求得拋物線方程;
(2)當(dāng)直線斜率存,設(shè)直線AB的方程為y=kx+n,代入橢圓方程,由韋達(dá)定理及向量數(shù)量積的坐標(biāo)運(yùn)算,代入整理可知:7n2-12k2-12=0,由OD⊥AB,則$k=-\frac{x_0}{y_0}$,點(diǎn)D在直線AB上,y0=kx0+n,整理求得點(diǎn)D的軌跡方程為${x^2}+{y^2}=\frac{12}{9}(y≠0)$,當(dāng)直線AB的斜率不存在時(shí),$D(±\frac{{2\sqrt{21}}}{7},0),滿足{x^2}+{y^2}=\frac{12}{7}$,即可求得點(diǎn)D為軌跡方程.

解答 解:(1)由題意知橢圓C1中F2(1,0)則:c=1,
由橢圓的離心率e=$\frac{c}{a}$=$\frac{1}{2}$
∴$a=2,b=\sqrt{{a^2}-{c^2}}=\sqrt{3}$
故橢圓的方程為$\frac{x^2}{4}+\frac{y^2}{3}$=1…(2分)
由F2(1,0)為拋物線C2:y2=4mx(m>0)的焦點(diǎn)可得m=1,
∴拋物線的方程為y2=4x…(4分)
(2)當(dāng)直線AB的斜率k存在時(shí)
設(shè)直線AB的方程為y=kx+n,設(shè)A(x1,y1),B(x2,y2
聯(lián)立$\left\{\begin{array}{l}\frac{x^2}{4}+\frac{y^2}{3}=1\\ y=kx+n\end{array}\right.$,
得(4k2+3)x2+8knx+4n2-12=0…(6分)
∴${x_1}+{x_2}=-\frac{8kn}{{4{k^2}+3}},{x_1}{x_2}=\frac{{4{n^2}-12}}{{4{k^2}+3}}$,
∴${y_1}{y_2}=(k{x_1}+n)(k{x_2}+n)={k^2}{x_1}{x_2}+kn({x_1}+{x_2})+{n^2}$,
∵$\overrightarrow{OA}•\overrightarrow{OB}=0$,
∴x1x2+y1y2=0,
即$({k^2}+1){x_1}{x_2}+kn({x_1}+{x_2})+n=0,\frac{{\{{k^2}+1\}(4{n^2}-12)}}{{4{k^2}+3}}-\frac{{8{k^2}{n^2}}}{{4{k^2}+3}}+{n^2}=0$,
∴7n2-12k2-12=0①…(8分)
又∵OD⊥AB,設(shè)D(x0,y0),
∴$k=-\frac{x_0}{y_0}$②
又∵點(diǎn)D在直線AB上,
∴y0=kx0+n,
∴$n={y_0}-k{x_0}={y_0}+\frac{x_0^2}{y_0}$③…(10分)
把②③代入①得$7{({y_0}+\frac{x_0^2}{y_0})^2}-12\frac{x_0^2}{y_0^2}-12=0$,
∴$\frac{x_0^2+y_0^2}{y_0^2}[7(x_0^2+y_0^2)-12]=0$,
∴$x_0^2+y_0^2=\frac{12}{7}$,
∴點(diǎn)D的軌跡方程為${x^2}+{y^2}=\frac{12}{9}(y≠0)$,
當(dāng)直線AB的斜率不存在時(shí),$D(±\frac{{2\sqrt{21}}}{7},0),滿足{x^2}+{y^2}=\frac{12}{7}$
∴點(diǎn)D的軌跡方程為${x^2}+{y^2}=\frac{12}{7}$…(13分)

點(diǎn)評 本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線與橢圓的位置關(guān)系,考查軌跡方程的求法,韋達(dá)定理及向量數(shù)量積的坐標(biāo)表示,考查計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.“一帶一路”是“絲綢之路經(jīng)濟(jì)帶”和“21世紀(jì)海上絲綢之路”的簡稱,某市為了了解人們對“一帶一路”的認(rèn)知程度,對不同年齡和不同職業(yè)的人舉辦了一次“一帶一路”知識競賽,滿分100分(90分及以上為認(rèn)知程度高),現(xiàn)從參賽者中抽取了x人,按年齡分成5組(第一組:[20,25),第二組:[25,30),第三組:[30,35),第四組:[35,40),第五組:[40,45]),得到如圖所示的頻率分布直方圖,已知第一組有6人.
(1)求x;
(2)求抽取的x人的年齡的中位數(shù)(結(jié)果保留整數(shù));
(3)從該市大學(xué)生、軍人、醫(yī)務(wù)人員、工人、個(gè)體戶五種人中用分層抽樣的方法依次抽取6人,42人,36人,24人,12人,分別記1~5組,從這5個(gè)按年齡分的組和5個(gè)按職業(yè)分的組中每組各選派1人參加知識競賽代表相應(yīng)的成績,年齡組中1~5組的成績分別為93,96,97,94,90,職業(yè)組中1~5組的成績分別為93,98,94,95,90.
(I)分別求5個(gè)年齡組和5個(gè)職業(yè)組成績的平均數(shù)和方差;
(II)以上述數(shù)據(jù)為依據(jù),評價(jià)5個(gè)年齡組和5個(gè)職業(yè)組對“一帶一路”的認(rèn)知程度,并談?wù)勀愕母邢耄?/div>

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知Rt△ABC中,∠C=90°.AC=3,BC=4,P為線段AB上的點(diǎn),且$\overrightarrow{CP}$=$\frac{x}{|\overrightarrow{CA}|}$•$\overrightarrow{CA}$+$\frac{y}{|\overrightarrow{CB}|}$•$\overrightarrow{CB}$,則xy的最大值為( 。
A.3B.2C.1D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知集合A={θ|cosθ<sinθ,0≤θ<2π},B={θ|tanθ<sinθ},則A∩B={θ|$\frac{π}{2}$<θ<π}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)實(shí)數(shù)m、n、x、y滿足m2+n2=a,x2+y2=b,其中a、b為正的常數(shù),則mx+ny的最大值是( 。
A.$\frac{a+b}{2}$B.$\sqrt{a•b}$C.$\frac{2ab}{a+b}$D.$\frac{\sqrt{{a}^{2}+^{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.球的大圓面積擴(kuò)大為原大圓面積的4倍,則球的表面積擴(kuò)大成原球表面積的( 。
A.2倍B.4倍C.8倍D.16倍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在等比數(shù)列{an}中,S3=3a3,則其公比q的值為( 。
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.1或-$\frac{1}{2}$D.-1或$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.過點(diǎn)$A({2,\sqrt{2}})$作圓x2+y2-2x-2=0的切線,則切線方程為x+$\sqrt{2}$y-4=0.(寫成一般式)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知定義域?yàn)镽的函數(shù)$f(x)=\frac{{b-{2^x}}}{{{2^x}+a}}$是奇函數(shù).
(1)求a,b的值;
(2)若對于t∈R,不等式f(2t2-k)+f(t2-2t)<0恒成立,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案