5.直線y=$\sqrt{3}$x-2的傾斜角大小為60°.

分析 由于直線的斜率等于$\sqrt{3}$,設(shè)傾斜角等于α,則 0°≤α<180°,且tanα=$\sqrt{3}$,由此求得α的值

解答 解:由題意得:直線的斜率是:k=$\sqrt{3}$,
設(shè)傾斜角等于α,則 0°≤α<180°,且tanα=$\sqrt{3}$,
∴α=60°,
故答案為 60°.

點評 本題主要考查直線的傾斜角和斜率的關(guān)系,以及傾斜角的取值范圍,已知三角函數(shù)值求角的大小,屬于基礎(chǔ)題

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

5.已知角α的終邊經(jīng)過點P(x,-$\sqrt{2}$)(x>0),且cosα=$\frac{\sqrt{3}}{6}$x,求sinα+$\frac{1}{tanα}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.觀察下列式子:$1+\frac{1}{2^2}<\frac{3}{2},1+\frac{1}{2^2}+\frac{1}{3^2}<\frac{5}{3},1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}<\frac{7}{4},…$據(jù)其中規(guī)律,可以猜想出:$1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+…+\frac{1}{{{{10}^2}}}<$$\frac{19}{10}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.設(shè)y=f(x)是二次函數(shù),方程f(x)=0有兩個相等的實根,且f′(x)=2x+4.
(1)求y=f(x)的表達式;
(2)求直線y=2x+4與y=f(x)所圍成的圖形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.復數(shù)z=(1+i)m2+(3-10i)m-(4-9i),(其中 i為虛數(shù)單位,m∈R),
(1)當m=0時,求復數(shù)z的模;    
(2)當實數(shù)m為何值時復數(shù)z為純虛數(shù);
(3)當實數(shù)m為何值時復數(shù)z在復平面內(nèi)對應(yīng)的點在第二象限?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.如圖,若正四棱錐P-ABCD的底面邊長為2,斜高為$\sqrt{5}$,則該正四棱錐的體積為$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.某商場在一部向下運行的手扶電梯終點的正上方豎直懸掛一幅廣告畫.如圖,該電梯的高AB為4米,它所占水平地面的長AC為8米.該廣告畫最高點E到地面的距離為10.5米.最低點D到地面的距離6.5米.假設(shè)某人的眼睛到腳底的距離MN為1.5米,他豎直站在此電梯上觀看DE的視角為θ.
(1)設(shè)此人到直線EC的距離為x米,試用x表示點M到地面的距離;
(2)此人到直線EC的距離為多少米,視角θ最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知f(x)=lnx,g(x)=$\frac{1}{2}$ax2+bx(a≠0),h(x)=f(x)-g(x),f(x)=lnx,g(x)=$\frac{1}{2}$ax2+bx(a≠0),h(x)=f(x)-g(x),
(1)若a=3,b=2,求h(x)的極值點;
(2)若b=2且h(x)存在單調(diào)遞減區(qū)間,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=ax,g(x)=lnx,其中a∈R.
(1)若函數(shù)F(x)=g(x+1)-f(x)有極值為0,求a的值;
(2)若函數(shù)G(x)=f[cos(1-x)]+g(x-1)在區(qū)間(1,2)上為增函數(shù),求a的取值范圍.

查看答案和解析>>

同步練習冊答案