5.數(shù)列{an}的前n項和為Sn,若Sn+an=4-$\frac{1}{{{2^{n-2}}}}({n∈{N^*}})$,則an=$\frac{n}{{2}^{n-1}}$.

分析 Sn+an=4-$\frac{1}{{{2^{n-2}}}}({n∈{N^*}})$,n≥2時,Sn-1+an-1=4-$\frac{1}{{2}^{n-3}}$,可得:2an-an-1=$\frac{1}{{2}^{n-2}}$.變形為2n-1an-2n-2an-1=1.利用等差數(shù)列的通項公式即可得出.

解答 解:∵Sn+an=4-$\frac{1}{{{2^{n-2}}}}({n∈{N^*}})$,
∴n≥2時,Sn-1+an-1=4-$\frac{1}{{2}^{n-3}}$,
可得:2an-an-1=$\frac{1}{{2}^{n-2}}$.
∴2n-1an-2n-2an-1=1.
n=1時,2a1=4-2,解得a1=1.
∴數(shù)列{2n-1an}是等差數(shù)列,首項為1,公差為1.
則2n-1an=1+(n-1)=n.
∴an=$\frac{n}{{2}^{n-1}}$.
故答案為:$\frac{n}{{{2^{n-1}}}}$.

點評 本題考查了數(shù)列遞推公式、等差數(shù)列的通項公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=2asin2x-2$\sqrt{3}$asinx•cosx+1在區(qū)間[0,$\frac{π}{2}$]的最大值為4,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.過點P(1,2)的直線l與圓(x-3)2+(y-1)2=5相切,若直線ax+y+3=0與直線l垂直,則a=(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{3}{7}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知x>0,y>0,x+y2=2,則log2x+2log2y的最大值為0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知實數(shù)x,y滿足不等式組$\left\{{\begin{array}{l}{x-y+2≥0}\\{2x+y-3≤0}\\{0≤y≤a}\end{array}}\right.$,若 z=-x+2y的最大值為3,則a的值為(  )
A.1B.$\frac{3}{2}$C.2D.$\frac{7}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.某學校用簡單隨機抽樣方法抽取了30名同學,對其每月平均課外閱讀時間(單位:小時)進行調(diào)查,莖葉圖如圖:若將月均課外閱讀時間不低于30小時的學生稱為“讀書迷”.
(1)將頻率視為概率,估計該校900名學生中“讀書迷”有多少人?
(2)從已抽取的7名“讀書迷”中隨機抽取男、女“讀書迷”各1人,參加讀書日宣傳活動.
(i)共有多少種不同的抽取方法?
(ii)求抽取的男、女兩位“讀書迷”月均讀書時間相差不超過2小時的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.若存在正常數(shù)a,b,使得?x∈R有f(x+a)≤f(x)+b恒成立,則稱f(x)為“限增函數(shù)”.給出下列三個函數(shù):①f(x)=x2+x+1;②$f(x)=\sqrt{|x|}$;③f(x)=sin(x2),其中是“限增函數(shù)”的是( 。
A.①②③B.②③C.①③D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.圓x2-2ax+y2=4-a2在y軸上的截距為2,則實數(shù)a=$±\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源:2016-2017學年江西省高一上學期第一次月考數(shù)學試卷(解析版) 題型:選擇題

已知全集,集合,,則集合可以表示為( )

A. B.

C. D.

查看答案和解析>>

同步練習冊答案