11.若集合A={-2,-1,0,1,2},集合B={x|lg(x+1)>0},則A∩B等于(  )
A.{-1,0,1,2}B.{-1,-2}C.{1,2}D.{0,1,2}

分析 化簡(jiǎn)集合B,根據(jù)交集的定義寫(xiě)出A∩B.

解答 解:集合A={-2,-1,0,1,2},
集合B={x|lg(x+1)>0}={x|x+1>1}={x|x>0},
∴A∩B={1,2}.
故選:C.

點(diǎn)評(píng) 本題考查了集合的化簡(jiǎn)與運(yùn)算問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.為弘揚(yáng)傳統(tǒng)文化,某校舉行詩(shī)詞大賽.經(jīng)過(guò)層層選拔,最終甲乙兩人進(jìn)入決賽,爭(zhēng)奪冠亞軍.決賽規(guī)則如下:①比賽共設(shè)有五道題;②比賽前兩人答題的先后順序通過(guò)抽簽決定后,雙方輪流答題,每次回答一道,;③若答對(duì),自己得1分;若答錯(cuò),則對(duì)方得1分;④先得 3 分者獲勝.已知甲、乙答對(duì)每道題的概率分別為$\frac{2}{3}$和$\frac{3}{4}$,且每次答題的結(jié)果相互獨(dú)立.
(Ⅰ)若乙先答題,求甲3:0獲勝的概率;
(Ⅱ)若甲先答題,記乙所得分?jǐn)?shù)為 X,求X的分布列和數(shù)學(xué)期望 EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知△ABC是邊長(zhǎng)為1的等邊三角形,則$(\overrightarrow{AB}-2\overrightarrow{BC})•(\overrightarrow{BC}+2\overrightarrow{CA})$=( 。
A.-2B.$-\frac{3}{2}$C.1D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.若圓x2+y2-x+my-4=0關(guān)于直線x-y=0對(duì)稱(chēng),動(dòng)點(diǎn)P(a,b)在不等式組$\left\{\begin{array}{l}x+y-2≤0\\ x+my≥0\\ y≥0\end{array}\right.$表示的平面區(qū)域內(nèi)部及邊界上運(yùn)動(dòng),則$z=\frac{b-2}{a-1}$的取值范圍是(-∞,-2]∪[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.某重點(diǎn)中學(xué)為了解高一年級(jí)學(xué)生身體發(fā)育情況,對(duì)全校700名高一年級(jí)學(xué)生按性別進(jìn)行分層抽樣檢查,測(cè)得身高(單位:cm)頻數(shù)分布表如表1、表2.
表1:男生身高頻數(shù)分布表
 身高(cm)[160,165)[165,170)[170,175)[175,180)[180,185)[185,190)
 頻數(shù) 1413 
表2:女生身高頻數(shù)分布表
 身高(cm)[150,155)[155,160)[160,165)[165,170)[170,175)[175,180)
 頻數(shù)12 
(1)求該校高一女生的人數(shù);
(2)估計(jì)該校學(xué)生身高在[165,180)的概率;
(3)以樣本頻率為概率,現(xiàn)從高一年級(jí)的男生和女生中分別選出1人,設(shè)X表示身高在[165,180)學(xué)生的人數(shù),求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)$f(x)=(1-k)x+\frac{1}{e^x}$.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)k=0時(shí),過(guò)點(diǎn)A(0,t)存在函數(shù)曲線f(x)的切線,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,四棱錐P-ABCD中,底面ABCD是平行四邊形,且平面PAC⊥平面ABCD,E為PD的中點(diǎn),PA=PC,AB=2BC=2,∠ABC=60°.
(Ⅰ)求證:PB∥平面ACE;
(Ⅱ)求證:平面PBC⊥平面PAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.關(guān)于函數(shù)的對(duì)稱(chēng)性有如下結(jié)論:對(duì)于給定的函數(shù)y=f(x),x∈D,如果對(duì)于任意的x∈D都有f(a+x)+f(a-x)=2b成立(a,b為常數(shù)),則函數(shù)f(x)關(guān)于點(diǎn)(a,b)對(duì)稱(chēng).
(1)用題設(shè)中的結(jié)論證明:函數(shù)f(x)=$\frac{-2x+1}{x-3}$關(guān)于點(diǎn)(3,-2);
(2)若函數(shù)f(x)既關(guān)于點(diǎn)(2,0)對(duì)稱(chēng),又關(guān)于點(diǎn)(-2,1)對(duì)稱(chēng),且當(dāng)x∈(2,6)時(shí),f(x)=2x+3x,求:
①f(-5)的值;
②當(dāng)x∈(8k-2,8k+2),k∈Z時(shí),f(x)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知數(shù)列{an}滿足:2a1+22a2+23a3+…+2nan=n(n∈N*),數(shù)列{$\frac{1}{lo{g}_{2}{a}_{n}•lo{g}_{2}{a}_{n+1}}$}的前n項(xiàng)和為Sn,則S1•S2•S3…S10=$\frac{1}{11}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案