分析 (1)由$\overrightarrow m=({2sin({A+C}),-\sqrt{3}})$,$\overrightarrow n=({1-2{{cos}^2}\frac{B}{2},cos2B})$,且$\overrightarrow m⊥\overrightarrow n$,解得-sin(2B+$\frac{π}{3}$)=0,可得B.
(2)sinAsinC=sin2B,由正弦定理可得:ac=b2,再利用余弦定理即可得出.
解答 解:(1)∵$\overrightarrow m=({2sin({A+C}),-\sqrt{3}})$,$\overrightarrow n=({1-2{{cos}^2}\frac{B}{2},cos2B})$,且$\overrightarrow m⊥\overrightarrow n$.
∴$\overrightarrow{m}•\overrightarrow{n}$=2sinBcosB-$\sqrt{3}$cos2B=-sin(2B+$\frac{π}{3}$)=0,
又因?yàn)殇J角三角形,所以$B=\frac{π}{3}$;
(2)∵sinAsinC=sin2B,由正弦定理可得:ac=b2,
由余弦定理可得:b2=a2+c2-2accosB,
∴ac=a2+c2-2accos$\frac{π}{3}$,化為(a-c)2=0,解得a-c=0.
點(diǎn)評(píng) 本題考查了正弦定理\余弦定理的應(yīng)用、數(shù)量積運(yùn)算性質(zhì)、輔助角公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{x^2}{3}+{y^2}=1$ | B. | $\frac{x^2}{3}+\frac{y^2}{2}=1$ | C. | $\frac{x^2}{12}+\frac{y^2}{4}=1$ | D. | $\frac{x^2}{12}+\frac{y^2}{8}=1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x|2≤x≤6} | B. | {x|2≤x≤5} | C. | {x|2<x<5} | D. | {x|1≤x≤2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 8 | B. | 10 | C. | 11 | D. | 13 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com