7.銳角△ABC中,角A,B,C的對(duì)邊分別為a,b,c,向量$\overrightarrow m=({2sin({A+C}),-\sqrt{3}})$,$\overrightarrow n=({1-2{{cos}^2}\frac{B}{2},cos2B})$,且$\overrightarrow m⊥\overrightarrow n$.
(1)求角B的大小;
(2)若sinAsinC=sin2B,求a-c的值.

分析 (1)由$\overrightarrow m=({2sin({A+C}),-\sqrt{3}})$,$\overrightarrow n=({1-2{{cos}^2}\frac{B}{2},cos2B})$,且$\overrightarrow m⊥\overrightarrow n$,解得-sin(2B+$\frac{π}{3}$)=0,可得B.
(2)sinAsinC=sin2B,由正弦定理可得:ac=b2,再利用余弦定理即可得出.

解答 解:(1)∵$\overrightarrow m=({2sin({A+C}),-\sqrt{3}})$,$\overrightarrow n=({1-2{{cos}^2}\frac{B}{2},cos2B})$,且$\overrightarrow m⊥\overrightarrow n$.
∴$\overrightarrow{m}•\overrightarrow{n}$=2sinBcosB-$\sqrt{3}$cos2B=-sin(2B+$\frac{π}{3}$)=0,
又因?yàn)殇J角三角形,所以$B=\frac{π}{3}$;
(2)∵sinAsinC=sin2B,由正弦定理可得:ac=b2,
由余弦定理可得:b2=a2+c2-2accosB,
∴ac=a2+c2-2accos$\frac{π}{3}$,化為(a-c)2=0,解得a-c=0.

點(diǎn)評(píng) 本題考查了正弦定理\余弦定理的應(yīng)用、數(shù)量積運(yùn)算性質(zhì)、輔助角公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)$f(x)=cosx(\sqrt{3}cosx-sinx)-\sqrt{3}$
(1)求函數(shù)f(x)的最小正周期和圖象的對(duì)稱軸方程.
(2)求函數(shù)f(x)的單調(diào)增區(qū)間.
(3)求函數(shù)y=f(x)在區(qū)間$[0,\frac{π}{2}]$上的最小值,并求使y=f(x)取得最小值時(shí)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.( I)求值:log23•log34-log20.125-$\sqrt{2{7}^{\frac{2}{3}}}$;
( II)求值:sin15°+cos15°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的一條弦所在直線的方程x-y-3=0,弦的中點(diǎn)坐標(biāo)為(2,-1),求橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.平面直角坐標(biāo)系中,橢圓C中心在原點(diǎn),焦點(diǎn)F1、F2在x軸上,離心率為$\frac{{\sqrt{3}}}{3}$.過(guò)點(diǎn)F1的直線l與C交于A、B兩點(diǎn),且△ABF2周長(zhǎng)為$4\sqrt{3}$,那么C的方程為(  )
A.$\frac{x^2}{3}+{y^2}=1$B.$\frac{x^2}{3}+\frac{y^2}{2}=1$C.$\frac{x^2}{12}+\frac{y^2}{4}=1$D.$\frac{x^2}{12}+\frac{y^2}{8}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.從一個(gè)正方體的6個(gè)面中任取2個(gè),則這2個(gè)面恰好互相平行的概率是$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.函數(shù)f(x)=x3+ax2+b的圖象在點(diǎn)P(1,0)處的切線與直線3x+y=0平行.
(1)求a,b;
(2)求函數(shù)f(x)在[0,t](t>0)內(nèi)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知集合A={x|x2-6x+5≤0},B={x|2x≥4},則A∩B=(  )
A.{x|2≤x≤6}B.{x|2≤x≤5}C.{x|2<x<5}D.{x|1≤x≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.如圖,莖葉圖記錄了甲、乙兩組各5名學(xué)生在一次英語(yǔ)聽(tīng)力測(cè)試中的成績(jī)(單位:分).已知甲組數(shù)據(jù)的中位數(shù)為15,乙組數(shù)據(jù)的平均數(shù)為16.8,則x+y的值為( 。
A.8B.10C.11D.13

查看答案和解析>>

同步練習(xí)冊(cè)答案