15.若點A的坐標為($\frac{1}{2}$,2),F(xiàn)是拋物線y2=2x的焦點,點M在拋物線上移動時,使|MF|+|MA|取得最小值的M的坐標為($\frac{1}{2}$,1).

分析 判斷點與拋物線的位置關系,利用拋物線的性質求解即可.

解答 解:點A的坐標為($\frac{1}{2}$,2),在拋物線y2=2x的外側,點M在拋物線上移動時,使|MF|+|MA|取得最小值就是MF的距離,F(xiàn)($\frac{1}{2}$,0),可得M的縱坐標為:y=$\sqrt{2×\frac{1}{2}}$=1.M的坐標為($\frac{1}{2}$,1).
故答案為:($\frac{1}{2}$,1).

點評 本題考查拋物線的簡單性質的應用,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

11.化簡或求值:
(1)($\frac{27}{8}$)${\;}^{-\frac{2}{3}}$-($\frac{49}{9}$)0.5+(0.008)${\;}^{-\frac{2}{3}}$×$\frac{2}{25}$
(2)計算$\frac{lg5•lg8000+{(lg{2}^{\sqrt{3}})}^{2}}{lg600-\frac{1}{2}lg0.036-\frac{1}{2}lg0.1}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知動點P在曲線2x2-y=0上移動,則點A(0,-1)與點P連線中點的軌跡方程是( 。
A.y=2x2B.y=8x2C.$y=4{x^2}+\frac{1}{2}$D.$y=4{x^2}-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{e}^{x},x≤0}\\{{x}^{2}+ax+1,x>0}\end{array}\right.$,F(xiàn)(x)=f(x)-x-1,且函數(shù)F(x)有2個零點,則實數(shù)a的取值范圍為( 。
A.(一∞,0]B.[1,+∞)C.(一∞,1)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖,F(xiàn)1是橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的右焦點,A和B是以O為圓心,以|OF1|為半徑的圓與該左半橢圓的兩個交點,且△F1AB是等邊三角形,求橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知各項為正數(shù)的數(shù)列{an}的前n項和Sn滿足:Sn>1,6Sn=(an+1)(an+2)(n∈N*
(1)求數(shù)列{an}的通項公式;
(2)求證:$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{a{{\;}_{2}a}_{3}}$+…+$\frac{1}{a{{\;}_{n}a}_{n+1}}$<$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知點A(1,-1),B(3,5),則線段AB的垂直平分線的方程為x+3y-8=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.設x=3+4i,則復數(shù)z=x-|x|-(1-i) 的虛部為( 。
A.3B.-3+5iC.5iD.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{a+lnx}{x}$在x=1處取得極值.
(1)求a的值,并討論函數(shù)f(x)的單調性;
(2)當x∈[1,+∞)時,f(x)≥$\frac{m}{1+x}$恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案