A. | ab2=9 | B. | a2b=9,a<0 | C. | b=9a2,a<0 | D. | b2=9a |
分析 設f(x)=ax+3,g(x)=x2-b,分別討論a=0,b=0時的情況,結合圖象判斷即可.
解答 解:∵(ax+3)(x2-b)≤0對任意x∈[0,+∞)恒成立,
∴當x=0時,不等式等價為-3b≤0,即b≥0,
當x→+∞時,x2-b>0,此時ax+3<0,則a<0,
設f(x)=ax+3,g(x)=x2-b,
若b=0,則g(x)=x2>0,
函數(shù)f(x)=ax+3的零點為x=-$\frac{3}{a}$,則函數(shù)f(x)在(0,-$\frac{3}{a}$)上f(x)>0,此時不滿足條件;
若a=0,則f(x)=3>0,而此時x→+∞時,g(x)>0不滿足條件,故b>0;
∵函數(shù)f(x)在(0,-$\frac{3}{a}$)上f(x)>0,則(-$\frac{3}{a}$,+∞))上f(x)<0,
而g(x)在(0,+∞)上的零點為x=$\sqrt$,且g(x)在(0,$\sqrt$)上g(x)<0,
則($\sqrt$,+∞)上g(x)>0,
∴要使(ax+3)(x2-b)≤0對任意x∈[0,+∞)恒成立,
則函數(shù)f(x)與g(x)的零點相同,即-$\frac{3}{a}$=$\sqrt$,
∴a2b=9,
故選:B.
點評 本題考查了構造方法、考查了分類討論方法、推理能力與計算能力,屬于難題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | -2 | C. | 0或-2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 1 | C. | 0 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com