A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 根據(jù)函數(shù)奇偶性的性質(zhì)以及奇偶性的定義進(jìn)行判斷即可.
解答 解:∵f(x)和g(x)分別是R上的偶函數(shù)和奇函數(shù),
∴f(-x)=f(x),g(-x)=-g(x),
則(1)f(-x)|g(-x)|=f(x)|-g(x)|=f(x)|g(x)|,則f(x)|g(x)|是R上的偶函數(shù),故正確;
(2)|f(-x)|g(-x)=|f(x)|•-g(x)=-|f(x)|g(x),則|f(x)|g(x)是R上的寄函數(shù),故錯(cuò)誤;
(3)f(-x)•g(-x)=-f(x)•g(x),則f(x)•g(x)是R上的奇函數(shù),故正確;
(4)f(-x)-g(-x)=f(x)+g(x),非奇非偶函數(shù),故錯(cuò)誤;
故選:B.
點(diǎn)評(píng) 本題主要考查函數(shù)奇偶性的判斷,根據(jù)函數(shù)奇偶性的定義和性質(zhì)是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{2}$ | B. | 3 | C. | $\frac{5}{2}$ | D. | $\frac{12}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題“若x2-5x-6=0”則“x=2”的逆否命題是“若x≠2”則“x2-5x-6≠0” | |
B. | 若命題p:存在${x_0}∈R,x_0^2+{x_0}+1<0$,則¬p:對(duì)任意x∈R,x2+x+1≥0 | |
C. | 若x,y∈R,則x=y是“$xy≥{(\frac{x+y}{2})^2}$”的充要條件 | |
D. | 已知命題p和q,若“p或q”為假命題,則命題p和q中必一真一假 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com