3.甲、乙兩所學(xué)校進(jìn)行同一門(mén)課程的考試,按照學(xué)生考試成績(jī)優(yōu)秀和不優(yōu)秀統(tǒng)計(jì)成績(jī)后,得到如下2×2列聯(lián)表:
班級(jí)與成績(jī)列聯(lián)表
優(yōu)秀不優(yōu)秀總計(jì)
甲隊(duì)8040120
乙隊(duì)240200440
合計(jì)320240560
(Ⅰ)能否在犯錯(cuò)誤的概率不超過(guò)0.025的前提下認(rèn)為成績(jī)與學(xué)校有關(guān)系;
(Ⅱ)采用分層抽樣的方法在兩所學(xué)校成績(jī)優(yōu)秀的320名學(xué)生中抽取16名同學(xué).現(xiàn)從這16名同學(xué)中隨機(jī)抽取3名運(yùn)同學(xué)作為成績(jī)優(yōu)秀學(xué)生代表介紹學(xué)習(xí)經(jīng)驗(yàn),記這3名同學(xué)來(lái)自甲學(xué)校的人數(shù)為X,求X的分布列與數(shù)學(xué)期望.附:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d)

分析 (Ⅰ)根據(jù)列聯(lián)表做出觀測(cè)值,把觀測(cè)值同臨界值進(jìn)行比較,得到有能在犯錯(cuò)誤的概率不超過(guò)0.025的前提下認(rèn)為成績(jī)與所在學(xué)校有關(guān)系;
(Ⅱ)確定ξX的取值,求出相應(yīng)的概率,可得分布列和數(shù)學(xué)期望.

解答 解:(Ⅰ)由題意得K2=$\frac{560×(80×200-40×240)^{2}}{120×440×320×240}$≈5.657>5.024,
∴能在犯錯(cuò)誤的概率不超過(guò)0.025的前提下認(rèn)為成績(jī)與所在學(xué)校有關(guān)系.…(3分)
(Ⅱ)16名同學(xué)中有甲學(xué)校有4人,乙學(xué)校有12人…..…(4分)
X的可能取值為0,1,2,3…..…(5分)
P(X=0)=$\frac{{C}_{12}^{3}}{{C}_{16}^{3}}$=$\frac{11}{28}$,P(X=1)=$\frac{{C}_{12}^{2}{C}_{4}^{1}}{{C}_{16}^{3}}$=$\frac{33}{70}$,P(X=2)=$\frac{{C}_{12}^{1}{C}_{4}^{2}}{{C}_{16}^{3}}$=$\frac{9}{70}$,P(X=3)=$\frac{{C}_{4}^{3}}{{C}_{16}^{3}}$=$\frac{1}{140}$
X的分布列為

X0123
P$\frac{11}{28}$$\frac{33}{70}$$\frac{9}{70}$$\frac{1}{140}$
…..…(10分)
∴EX=0×$\frac{11}{28}$+1×$\frac{33}{70}$+2×$\frac{9}{70}$+3×$\frac{1}{140}$=$\frac{3}{4}$…..…(12分)

點(diǎn)評(píng) 本題主要考查獨(dú)立性檢驗(yàn)的應(yīng)用,考查離散型隨機(jī)變量的分布列與期望,解題的關(guān)鍵是正確運(yùn)算出觀測(cè)值,理解臨界值對(duì)應(yīng)的概率的意義,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若復(fù)數(shù)z=i(1-2i)(i為虛數(shù)單位),則$\overline{z}$=( 。
A.1-2iB.1+2iC.2+iD.2-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,在三棱柱ABC-A1B1C1中,已知BC=1,BB1=2,AB=$\sqrt{2}$,∠BCC1=90°,AB⊥側(cè)面BB1C1C,E為CC1的中點(diǎn)
(1)求證:EA⊥EB1
(2)求二面角A-EB1-A1的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.某中學(xué)共有4400名學(xué)生,其中男生共有2400名,女生2000名,為了解學(xué)生的數(shù)學(xué)基礎(chǔ)的差異,采用分層抽樣的辦法從全體學(xué)生中選取55名同學(xué)進(jìn)行試卷成績(jī)調(diào)查,得到男生試卷成績(jī)的頻率分布直方圖和女生試卷成績(jī)的頻數(shù)分布表.
女生試卷成績(jī)的頻數(shù)分布表
 成績(jī)分組[75,90)[90,105)[105,120)[120,135)[135,150)
 頻數(shù) 2 6 8 7 b
(1)計(jì)算a,b的值,以分組的中點(diǎn)數(shù)據(jù)為平均數(shù),分別估計(jì)該校男生和女生的數(shù)學(xué)成績(jī);
(2)若規(guī)定成績(jī)?cè)赱120,150]內(nèi)為數(shù)學(xué)基礎(chǔ)優(yōu)秀,由以上統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面的2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為男女生的數(shù)學(xué)基礎(chǔ)有差異.
  男生 女生 總計(jì)
 優(yōu)秀   
 不優(yōu)秀   
 總計(jì)   
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
臨界值表:
P(K2≥k00.100.050.01
K02.7063.8416,635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.如圖,邊長(zhǎng)為4的正方形ABED的對(duì)邊AB、ED的中點(diǎn)為C、F,將此正方形沿著CF折成120°的二面角,連AB、DE得一直三棱柱,則此三棱柱外接球的表面積等于( 。
A.16πB.32πC.D.64π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.如圖,網(wǎng)格紙上正方形小格的邊長(zhǎng)為1(單位:cm),圖中粗線畫(huà)出的是某零件的三視圖,則該零件的體積(單位:cm2)為(  )
A.240-24πB.240-12πC.240-8πD.240-4π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.某課題組對(duì)全班45名同學(xué)的飲食習(xí)慣進(jìn)行了一次調(diào)查,并用莖葉圖表示45名同學(xué)的飲食指數(shù).說(shuō)明:如圖中飲食指數(shù)低于70的人被認(rèn)為喜食蔬菜,飲食指數(shù)不低于70的人被認(rèn)為喜食肉類(lèi)
(1)根據(jù)莖葉圖,完成下面2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為喜食蔬菜還是喜食肉類(lèi)與性別有關(guān),說(shuō)明理由:
喜食蔬菜喜食肉類(lèi)合計(jì)
男同學(xué)
女同學(xué)
合計(jì)
(2)根據(jù)飲食指數(shù)在[10,39],[40,69],[70,99]進(jìn)行分層抽樣,從全班同學(xué)中抽取15名同學(xué)進(jìn)一步調(diào)查,記抽取到的喜食肉類(lèi)的女同學(xué)為ξ,求ξ的分布列和數(shù)學(xué)期望Eξ
下面公式及臨界值表僅供參考:附:X2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$

P(K2≥k)0.1000.050.010
k2.7063.8416.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.某組合體的三視圖如圖示,則該組合體的表面積為(  )
A.$(6+2\sqrt{2})π+12$B.8(π+1)C.4(2π+1)D.$(12+2\sqrt{2})π$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.函數(shù)y=f(x)的定義域?yàn)镈,若滿足:
①f(x)在D內(nèi)是單調(diào)函數(shù);
②存在[a,b]⊆D使得f(x)在[a,b]上的值域?yàn)閇${\frac{a}{2}$,$\frac{2}}$],則稱函數(shù)f(x)為“成功函數(shù)”.
若函數(shù)f(x)=logc(cx+t)(c>0,c≠1)是“成功函數(shù)”,則t的取值范圍為( 。
A.(0,+∞)B.(-∞,$\frac{1}{4}}$)C.(${\frac{1}{4}$,+∞)D.(0,$\frac{1}{4}}$)

查看答案和解析>>

同步練習(xí)冊(cè)答案