1.若關于x的函數(shù)f(x)=$\frac{t{x}^{2}+2x+{t}^{2}+sinx}{{x}^{2}+t}$(t>0)的最大值為M,最小值為N,且M+N=6,則實數(shù)t的值為3.

分析 由題意,f(x)=$\frac{t{x}^{2}+2x+{t}^{2}+sinx}{{x}^{2}+t}$=t+$\frac{2x+sinx}{{x}^{2}+t}$,函數(shù)y=$\frac{2x+sinx}{{x}^{2}+t}$是奇函數(shù),函數(shù)f(x)最大值為M,最小值為N,且M+N=6,可得2t=6,即可求出實數(shù)t的值

解答 解:由題意,f(x)=$\frac{t{x}^{2}+2x+{t}^{2}+sinx}{{x}^{2}+t}$=t+$\frac{2x+sinx}{{x}^{2}+t}$,
函數(shù)y=$\frac{2x+sinx}{{x}^{2}+t}$是奇函數(shù),函數(shù)f(x)最大值為M,最小值為N,且M+N=6,
∴2t=6,
∴t=3,
故答案為:3.

點評 本題考查函數(shù)的最大值、最小值,考查函數(shù)是奇偶性,考查學生分析解決問題的能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=xln x,g(x)=(-x2+ax-3)ex(a為實數(shù)).
(1)當a=5時,求函數(shù)y=g(x)在x=1處的切線方程;
(2)求f(x)在區(qū)間[t,t+2](t>0)上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知二次函數(shù)f(x)=ax2+bx+1和函數(shù)g(x)=$\frac{bx-1}{{a}^{2}x+2b}$,
(1)若f(x)為偶函數(shù),試判斷g(x)的奇偶性;
(2)若方程g(x)=x有兩個不等的實根x1,x2(x2<x2),則
①試判斷函數(shù)f(x)在區(qū)間(-1,1)上是否具有單調(diào)性,并說明理由;
②若方程f(x)=0的兩實根為x3,x4(x3<x4)求使x1<x2<x3<x4成立的a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.設函數(shù)f(x)=$\frac{x}{x+2}$(x>0),觀察:
f1(x)=f(x)=$\frac{x}{x+2}$(x>0),f2(x)=f(f1(x))=$\frac{x}{3x+4}$,f3(x)=f(f2(x))=$\frac{x}{7x+8}$,f4(x)=f(f3(x))=$\frac{x}{15x+16}$…
根據(jù)以上事實,由歸納推理可得:當n∈N+時,fn(1)=$\frac{1}{{{2^{n+1}}-1}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.在直角坐標系xOy中,以O為極點,x軸正半軸為極軸建立極坐標系.圓C1和直線C2的極坐標方程分別為ρ=4sinθ,ρcos(θ-$\frac{π}{4}$)=2$\sqrt{2}$.
(1)求圓C1和直線C2的直角坐標方程.
(2)求圓C1和直線C2交點的極坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.在對人們的休閑方式的一次調(diào)查中,共調(diào)查了124人,其中女性70人,男性54人,女性中有43人主要的休閑方式是看電視,其余人主要的休閑方式是運動;男性中有21人主要的休閑方式是看電視,其余人主要的休閑方式是運動.
(1)根據(jù)以上數(shù)據(jù)建立一個2×2的列聯(lián)表;
看電視運動合計
男性21
女性4370
合計124
(2)能否在犯錯誤的概率不超過0.01的前提下,認為休閑方式與性別有關系.
參考臨界值表
P(k2>k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.845.0246.6357.87910.83

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=|x-2|+2|x+1|.
(1)解不等式f(x)>4;
(2)若關于x的不等式f(x)≥m恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{lnx}{1-x}$,ϕ(x)=(x-1)2•f′(x)
(1)若函數(shù)ϕ(x)在區(qū)間(3m,m+$\frac{1}{2}$)上單調(diào)遞減,求實數(shù)m的取值范圍;
(2)若對任意的x∈(0,1),恒有(1+x)•f(x)+2a<0(a>0),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.在△ABC中,A=60°,且$\frac{c}$=$\frac{4}{3}$,則sinC=$\frac{2\sqrt{39}}{13}$.

查看答案和解析>>

同步練習冊答案