分析 由已知利用三角形內(nèi)角和定理,兩角差的正弦函數(shù)公式化簡已知等式可求sinC=2$\sqrt{3}$cosC,利用同角三角函數(shù)基本關系式可求tanC,進而可求sinC的值.
解答 解:∵A=60°,且$\frac{c}$=$\frac{4}{3}$,
∴$\frac{c}$=$\frac{sinC}{sinB}$=$\frac{sinC}{sin(120°-C)}$=$\frac{sinC}{\frac{\sqrt{3}}{2}cosC+\frac{1}{2}sinC}$=$\frac{4}{3}$,
∴sinC=2$\sqrt{3}$cosC,tanC=2$\sqrt{3}$,
∴cos2C=$\frac{1}{1+ta{n}^{2}C}$=$\frac{1}{13}$,可得:sinC=$\sqrt{1-co{s}^{2}C}$=$\frac{2\sqrt{39}}{13}$.
故答案為:$\frac{2\sqrt{39}}{13}$.
點評 本題主要考查了三角形內(nèi)角和定理,兩角差的正弦函數(shù)公式,同角三角函數(shù)基本關系式在解三角形中的綜合應用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-1,5) | B. | (-1,5] | C. | (-1,2) | D. | (-1,2] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-$\sqrt{2}$,0)U(0,$\sqrt{2}$) | B. | (-3$\sqrt{2}$,3$\sqrt{2}$) | C. | (-3$\sqrt{2}$,-$\sqrt{2}$)U($\sqrt{2}$,3$\sqrt{2}$) | D. | (-3$\sqrt{2}$,-$\sqrt{2}$]U($\sqrt{2}$,3$\sqrt{2}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com