11.在△ABC中,A=60°,且$\frac{c}$=$\frac{4}{3}$,則sinC=$\frac{2\sqrt{39}}{13}$.

分析 由已知利用三角形內(nèi)角和定理,兩角差的正弦函數(shù)公式化簡已知等式可求sinC=2$\sqrt{3}$cosC,利用同角三角函數(shù)基本關系式可求tanC,進而可求sinC的值.

解答 解:∵A=60°,且$\frac{c}$=$\frac{4}{3}$,
∴$\frac{c}$=$\frac{sinC}{sinB}$=$\frac{sinC}{sin(120°-C)}$=$\frac{sinC}{\frac{\sqrt{3}}{2}cosC+\frac{1}{2}sinC}$=$\frac{4}{3}$,
∴sinC=2$\sqrt{3}$cosC,tanC=2$\sqrt{3}$,
∴cos2C=$\frac{1}{1+ta{n}^{2}C}$=$\frac{1}{13}$,可得:sinC=$\sqrt{1-co{s}^{2}C}$=$\frac{2\sqrt{39}}{13}$.
故答案為:$\frac{2\sqrt{39}}{13}$.

點評 本題主要考查了三角形內(nèi)角和定理,兩角差的正弦函數(shù)公式,同角三角函數(shù)基本關系式在解三角形中的綜合應用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

1.若關于x的函數(shù)f(x)=$\frac{t{x}^{2}+2x+{t}^{2}+sinx}{{x}^{2}+t}$(t>0)的最大值為M,最小值為N,且M+N=6,則實數(shù)t的值為3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知P為拋物線y2=6x上一點,點P到直線l:3x-4y+26=0的距離為d1
(1)求d1的最小值,并求此時點P的坐標;
(2)若點P到拋物線的距離為d2,求d1+d2的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.函數(shù)f(x)=ln(x+1)-x的單調(diào)遞減區(qū)間為(0,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.若函數(shù)f(x)=$\frac{1}{3}{x^3}$-x在區(qū)間(a2-26,a)上有最大值,則實數(shù)a的取值范圍為( 。
A.(-1,5)B.(-1,5]C.(-1,2)D.(-1,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知圓(x-1)2+(y-1)2=4上到直線y=x+b的距離等于1的點有且僅有2個,則b的取值范圍是( 。
A.(-$\sqrt{2}$,0)U(0,$\sqrt{2}$)B.(-3$\sqrt{2}$,3$\sqrt{2}$)C.(-3$\sqrt{2}$,-$\sqrt{2}$)U($\sqrt{2}$,3$\sqrt{2}$)D.(-3$\sqrt{2}$,-$\sqrt{2}$]U($\sqrt{2}$,3$\sqrt{2}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=x2+2x-3,g(x)=$\frac{klnx}{x}$,且函數(shù)f(x)與g(x)的圖象在x=1處的切線相同.
(1)求k的值;
(2)令F(x)=$\left\{\begin{array}{l}{|f(x)|(x≤1)}\\{g(x)(x>1)}\end{array}\right.$,若函數(shù)y=F(x)-m存在3個零點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.設集合B={x∈Z|$\frac{6}{3-x}$∈N}.
(1)試判斷元素1,-1與集合B的關系;
(2)用列舉法表示集合B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.以直角坐標系的原點O為極點,x軸的正半軸為極軸,且兩個坐標系取相同的單位長度,已知直線l的參數(shù)方程是$\left\{\begin{array}{l}x=\frac{{\sqrt{2}}}{2}t\\ y=3+\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t為參數(shù)),曲線C的極坐標方程是ρcos2θ=2sinθ.
(1)寫出直線l的普通方程和曲線C的直角坐標方程;
(2)設直線l與曲線C相交于A,B兩點,點M為AB的中點,點P的極坐標為$(\sqrt{2},\frac{π}{4})$,求|PM|的值.

查看答案和解析>>

同步練習冊答案