6.已知函數(shù)f(x)=1nx+2x-6的零點(diǎn)在區(qū)間($\frac{k}{2}$,$\frac{k+1}{2}$)(k∈Z)內(nèi),那么k=5.

分析 函數(shù)f(x)=lnx+2x-6在其定義域上連續(xù)單調(diào)遞增,從而利用函數(shù)的零點(diǎn)的判定定理求解即可.

解答 解:函數(shù)f(x)=lnx+2x-6在其定義域(0,+∞)上連續(xù)單調(diào)遞增,
f(1)=ln1+2-6=-4<0
f(2)=ln2+4-6=ln2-2<0,
f(3)=ln3+6-6=ln3>0;
∴根據(jù)零點(diǎn)存在定理,?x0∈(2,3),使得f(x0)=0.
∵f($\frac{5}{2}$)=ln$\frac{5}{2}$-1=ln$\frac{5}{2}$-lne<0
∴x0∈($\frac{5}{2}$,3)
∴$\frac{k}{2}$=$\frac{5}{2}$即k=5
故答案為:5.

點(diǎn)評(píng) 本題考查了函數(shù)的零點(diǎn)的判定定理的應(yīng)用.注意函數(shù)的單調(diào)性以及函數(shù)的連續(xù)性的判斷.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若f(x)=-x,g(f(x))=2x+x2,則g(-1)=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.對(duì)于n維向量A=(a1,a2,…,an),若對(duì)任意i∈{1,2,…,n}均有ai=0或ai=1,則稱(chēng)A為n維T向量.對(duì)于兩個(gè)n維T向量A,B,定義d(A,B)=$\sum_{i=1}^n{|{a_i}-{b_i}|}$.
(Ⅰ)若A=(1,0,1,0,1),B=(0,1,1,1,0),求d(A,B)的值.
(Ⅱ)現(xiàn)有一個(gè)5維T向量序列:A1,A2,A3,…,若A1=(1,1,1,1,1)且滿足:d(Ai,Ai+1)=2,i∈N*.求證:該序列中不存在5維T向量(0,0,0,0,0).
(Ⅲ)現(xiàn)有一個(gè)12維T向量序列:A1,A2,A3,…,若${A_1}=(\underbrace{1,1,…,1}_{12個(gè)})$且滿足:d(Ai,Ai+1)=m,m∈N*,i=1,2,3,…,若存在正整數(shù)j使得${A_j}=(\underbrace{0,0,…,0}_{12個(gè)})$,Aj為12維T向量序列中的項(xiàng),求出所有的m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.若x,y滿足不等式組$\left\{\begin{array}{l}{3x-y+3≥0}\\{x+2m≤0}\\{y-3m≥0}\end{array}\right.$,且z=2x-3y的最大值為13,則實(shí)數(shù)m=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知橢圓${C_1}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的頂點(diǎn)到直線l:y=x的距離分別為$\frac{{\sqrt{6}}}{2},\frac{{\sqrt{2}}}{2}$.
(1)求橢圓C1的離心率;
(2)過(guò)圓O:x2+y2=4上任意一點(diǎn)P作橢圓C1的兩條切線PM和PN分別與圓交于點(diǎn)M,N,求△PMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)不等式|x-4|-|2x-7|>$\frac{1}{3}$(x-7)的解集為M.
(1)求M;
(2)證明:當(dāng)a、b∈M時(shí),|$\sqrt{ab}$-2|<|2$\sqrt{a}$-$\sqrt$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在△ABC中,a,b,c分別是角A、B、C所對(duì)的邊長(zhǎng),A、B均為銳角,若sinA=cosB,則$\frac{a+b}{c}$的最大值是( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.如圖,將一塊半徑為2的半圓形紙板切割成等腰梯形的形狀,下底AB是半圓的直徑,上底CD的端點(diǎn)在半圓上,則所得梯形的周長(zhǎng)的最大值為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{1}{2}$ax2-lnx,a∈R
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)對(duì)?x1,x2∈[1,e],總有|f(x1)-f(x2)≤3成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案