10.已知集合A={x|m-4<x<2m},B={x|-1<x<4},若A∩B=B,則實(shí)數(shù)m的取值范圍為[2,3].

分析 根據(jù)A∩B=B,說(shuō)明B⊆A,建立條件關(guān)系即可求實(shí)數(shù)m的取值范圍.

解答 解:∵A∩B=B
∴B⊆A
∵A={x|m-4<x<2m},B={x|-1<x<4},
∴滿足:$\left\{\begin{array}{l}{m-4≤-1}\\{4≤2m}\end{array}\right.$
解得:2≤m≤3,
綜上所得實(shí)數(shù)m的取值范圍是[2,3].
故答案為[2,3].

點(diǎn)評(píng) 本題的考點(diǎn)是集合的包含關(guān)系,考查兩個(gè)集合的子集關(guān)系,解題的關(guān)鍵是正確判斷集合的含義.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知集合A={-2,-1,0,2},B={x|x2=2x},則A∩B={0,2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知數(shù)列{an}的前n項(xiàng)和為${S_n}={2^n}-1$,則此數(shù)列的通項(xiàng)公式為an=2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知集合M={(x,y)|y=f(x)},若對(duì)于任意實(shí)數(shù)對(duì)(x1,y1)∈M,存在(x2,y2)∈M,使x1x2+y1y2=0成立,則稱集合M是“垂直對(duì)點(diǎn)集”.給出下列四個(gè)集合:
①M(fèi)={(x,y)|y=$\frac{1}{{x}^{2}}$}; 
②M={(x,y)|y=log2x}; 
③M={(x,y)|y=2x-2};
④M={(x,y)|y=sinx+1}.
其中是“垂直對(duì)點(diǎn)集”的序號(hào)是( 。
A.①②③B.①②④C.①③④D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè){an}是首項(xiàng)為a1,公差為-2的等差數(shù)列,Sn為前n項(xiàng)和,若S1,S2,S4成等比數(shù)列,則a1=(  )
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.下列判斷中正確的是( 。
A.$f(x)={(\sqrt{x})^2}$是偶函數(shù)B.$f(x)=\frac{{{x^2}-x}}{x-1}$是奇函數(shù)
C.$f(x)=\frac{{{2^x}+1}}{{{2^x}-1}}$是偶函數(shù)D.$f(x)=\frac{{\sqrt{4-{x^2}}}}{|x-3|-3}$是奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知集合A={-1,2},B={x∈Z|0≤x≤2},則A∩B等于(  )
A.{0}B.{2}C.φD.φ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知函數(shù)f(x)=x2-3x+c,(x∈[1,3]的值域?yàn)椋ā 。?table class="qanwser">A.[f(1),f(3)]B.[f(1),f($\frac{3}{2}$)]C.[c-$\frac{9}{4}$,f(3)]D.[f($\frac{3}{2}$),f(3)]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若集合P={x|2≤x<4},Q={x||x|>3},則P∩Q等于(  )
A.{x|3<x<4}B.{x|-3<x<4}C.{x|2≤x<3}D.{x|2≤x≤3}

查看答案和解析>>

同步練習(xí)冊(cè)答案