分析 (1)利用向量的平方與其模長(zhǎng)平方相等,轉(zhuǎn)化為數(shù)量積的運(yùn)算,然后開方求值;
(2)利用向量平行的性質(zhì)得到$\overrightarrow c=λ\overrightarrow d$,借助于平面向量基本定理得到m的值.
解答 解:(1)$\overrightarrow a•\overrightarrow b=\frac{1}{2}$,
∴${|{\overrightarrow a+3\overrightarrow b}|^2}={|a|^2}+6\overrightarrow a•\overrightarrow b+9{|{\overrightarrow b}|^2}=13$,
∴$|{\overrightarrow a+3\overrightarrow b}|=\sqrt{13}$…4分
(2)當(dāng)$\overrightarrow c$∥$\overrightarrow d$,則存在實(shí)數(shù)λ使$\overrightarrow c=λ\overrightarrow d$,所以$3\overrightarrow a+2\overrightarrow b=λ(m\overrightarrow a-4\overrightarrow b)$
∵$\overrightarrow a,\overrightarrow b$不共線
∴$\left\{\begin{array}{l}3=λm\\ 2=-4λ\end{array}\right.$
∴m=-6…(8分)
點(diǎn)評(píng) 本題考查了平面向量的模長(zhǎng)計(jì)算以及平行的性質(zhì)、平面向量基本定理;屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $y=sin(x+\frac{π}{6})$ | B. | $y=sin(2x-\frac{π}{6})$ | C. | $y=sin(2x+\frac{π}{6})$ | D. | $y=sin(2x+\frac{π}{3})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ${({\sqrt{2}+\sqrt{7}})^2}<{({\sqrt{3}+\sqrt{6}})^2}$ | B. | ${({\sqrt{2}-\sqrt{6}})^2}<{({\sqrt{3}-\sqrt{7}})^2}$ | C. | ${({\sqrt{2}-\sqrt{3}})^2}<{({\sqrt{6}-\sqrt{7}})^2}$ | D. | ${({\sqrt{2}-\sqrt{3}-\sqrt{6}})^2}<{({-\sqrt{7}})^2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a<b<c | B. | b<a<c | C. | a<c<b | D. | c<a<b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com