分析 (1)由x<-2,可得x+2<0,-(x+2)>0.變形為y=2(x+2)+$\frac{1}{x+2}$-4=-[-2(x+2)+$\frac{-1}{x+2}$]-4,利用基本不等式的性質即可得出.
(2)x2+y2+xy=(x+y)2-xy=1,可得(x+y)2=xy+1≤($\frac{x+y}{2}$)2+1.即可得出.
解答 解:(1)∵x<-2,∴x+2<0,-(x+2)>0.
∴y=2(x+2)+$\frac{1}{x+2}$-4=-[-2(x+2)+$\frac{-1}{x+2}$]-4≤-2-4=-2-4.
當且僅當-2(x+2)=(x<-2),即x=-2-$\frac{\sqrt{2}}{2}$時,y取最大值-2$\sqrt{2}$-4.
(2)x2+y2+xy=(x+y)2-xy=1,
∴(x+y)2=xy+1≤($\frac{x+y}{2}$)2+1.∴(x+y)2≤$\frac{3}{4}$.
∴x+y≤$\frac{2}{3}$.當且僅當x=y=時等號成立.
點評 本題考查了基本不等式的性質、變形能力,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | $\frac{1}{3}$ | C. | $1+\frac{1}{2}+\frac{1}{3}$ | D. | 都不正確 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com