19.如圖,在矩形ABCD中,|AB|=4,|AD|=2,O為AB中點(diǎn),P,Q分別是AD和CD的中點(diǎn),且直線AQ與BP的交點(diǎn)在橢圓E:$\frac{x^2}{a^2}$+y2=1(a>0)上.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)R為橢圓E的右頂點(diǎn),T為橢圓E的上頂點(diǎn),M為橢圓E第一象限部分上一點(diǎn),求梯形ORMT面積的最大值.

分析 (Ⅰ)由題可知,$\frac{y_1}{2}=\frac{{{x_1}+2}}{4},\frac{y}{x+2}=\frac{2}{{{x_1}+2}},\frac{y}{x-2}=\frac{y_1}{-4}$,整理即可求得橢圓E的方程;
(Ⅱ)由${y_0}=\frac{1}{2}\sqrt{4-x_0^2}$,則四邊形面積$S=\frac{1}{2}×2×{y_0}+\frac{1}{2}×1×{x_0}=\frac{{\sqrt{4-x_0^2}}}{2}+\frac{x_0}{2}≤\sqrt{\frac{4-x_0^2+x_0^2}{2}}=\sqrt{2}$,即可求得梯形ORMT面積的最大值.

解答 解:(Ⅰ)設(shè)AQ于BP交點(diǎn)C為(x,y),P(-2,y1),Q(x1,2),
由題可知,$\frac{y_1}{2}=\frac{{{x_1}+2}}{4},\frac{y}{x+2}=\frac{2}{{{x_1}+2}},\frac{y}{x-2}=\frac{y_1}{-4}$,(4分)
從而有$\frac{-4y}{x-2}=\frac{x+2}{y}$,整理得$\frac{x^2}{4}+{y^2}=1$,即為橢圓方程,
橢圓E的方程$\frac{x^2}{4}+{y^2}=1$;(6分)
(Ⅱ)R(2,0),設(shè)M(x0,y0),由${y_0}=\frac{1}{2}\sqrt{4-x_0^2}$,(8分)
從而所求四邊形面積$S=\frac{1}{2}×2×{y_0}+\frac{1}{2}×1×{x_0}=\frac{{\sqrt{4-x_0^2}}}{2}+\frac{x_0}{2}≤\sqrt{\frac{4-x_0^2+x_0^2}{2}}=\sqrt{2}$,(10分)
當(dāng)且僅當(dāng)${x_0}=\sqrt{2},{y_0}=\frac{{\sqrt{2}}}{2}$取得最大值,
梯形ORMT面積的最大值$\sqrt{2}$.(12分)

點(diǎn)評(píng) 本小題考查橢圓的標(biāo)準(zhǔn)方程及面積最值問(wèn)題,考查基本不等式的性質(zhì),考查學(xué)生的邏輯思維能力和運(yùn)算求解能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,輸出的結(jié)果是a=( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.醫(yī)學(xué)上某種還沒(méi)有完全攻克的疾病,治療時(shí)需要通過(guò)藥物控制其中的兩項(xiàng)指標(biāo)H和V.現(xiàn)有..三種不同配方的藥劑,根據(jù)分析,A,B,C三種藥劑能控制H指標(biāo)的概率分別為0.5,0.6,0.75,能控制V指標(biāo)的概率分別是0.6,0.5,0.4,能否控制H指標(biāo)與能否控制V指標(biāo)之間相互沒(méi)有影響.
(Ⅰ)求A,B,C三種藥劑中恰有一種能控制H指標(biāo)的概率;
(Ⅱ)某種藥劑能使兩項(xiàng)指標(biāo)H和V都得到控制就說(shuō)該藥劑有治療效果.求三種藥劑中有治療效果的藥劑種數(shù)X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.秦九韶是我國(guó)南宋時(shí)期的數(shù)學(xué)家,他在《數(shù)學(xué)九章》中提出的多項(xiàng)式的秦九韶算法,至今仍是比較先進(jìn)的算法,如圖是事項(xiàng)該算法的程序框圖,執(zhí)行該程序框圖,若輸入n,x的值分別為4,2,則輸出v的值為(  )
A.5B.12C.25D.50

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.函數(shù)f(x)=$\frac{1}{lnx}$的大致圖象為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.S(A)表示集合A中所有元素的和,且A⊆{1,2,3,4,5},若S(A)能被3整除,則符合條件的非空集合A的個(gè)數(shù)是( 。
A.10B.11C.12D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)$f(x)=\frac{lnx}{ax}$(a>0).
(Ⅰ)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若$f(x)<\frac{1}{{\sqrt{x}}}$恒成立,求a的取值范圍;
(Ⅲ)證明:總存在x0,使得當(dāng)x∈(x0,+∞),恒有f(x)<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.函數(shù)f(x)=Asin(ωx+φ)(ω>0,$|φ|<\frac{π}{2}$)的部分圖象如圖所示,將函數(shù)f(x)的圖象向右平移$\frac{7π}{24}$個(gè)單位后得到函數(shù)g(x)的圖象,若函數(shù)g(x)在區(qū)間$[{-\frac{π}{3},θ}]$($θ>-\frac{π}{3}$)上的值域?yàn)閇-1,2],則θ=$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.公差不為零的等差數(shù)列{an}的前n項(xiàng)和為Sn.若a4是a3與a7的等比中項(xiàng),S8=16,則S10等于( 。
A.18B.24C.30D.60

查看答案和解析>>

同步練習(xí)冊(cè)答案