分析 (1)利用橢圓的中心在原點,左焦點為F1(-$\sqrt{3}$,0),且右頂點為D(2,0).求出橢圓的幾何量a,b,即可得到橢圓方程.
(2)設(shè)P(x0,y0),M(x,y),點A的坐標(biāo)是(1,$\frac{1}{2}$),線段PA的中點M,轉(zhuǎn)化求解代入橢圓方程即可得到M的軌跡方程.
解答 解:(1)∵a=2,c=$\sqrt{3}$,∴b=$\sqrt{{a}^{2}-{c}^{2}}$=1.∴橢圓的標(biāo)準(zhǔn)方程為:$\frac{{x}^{2}}{4}+{y}^{2}=1$.
(2)設(shè)P(x0,y0),M(x,y),點A的坐標(biāo)是(1,$\frac{1}{2}$),線段PA的中點M,
由中點坐標(biāo)公式,得$\left\{\begin{array}{l}{x=\frac{{x}_{0}+1}{2}}\\{y=\frac{{y}_{0}+\frac{1}{2}}{2}}\end{array}\right.$,
∴$\left\{\begin{array}{l}{{x}_{0}=2x-1}\\{{y}_{0}=2y-\frac{1}{2}}\end{array}\right.$,又∵$\frac{{{x}_{0}}^{2}}{4}+{{y}_{0}}^{2}=1$,
∴$\frac{(2{x-1)}^{2}}{4}+(2y-\frac{1}{2})^{2}=1$,即為中點M的軌跡方程.
點評 本題考查橢圓方程的求法,直線與橢圓的位置關(guān)系的綜合應(yīng)用,考查計算能力.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(1)<ef(0),f(2017)>e2017f(0) | B. | f(1)>ef(0),f(2017)>e2017f(0) | ||
C. | f(1)>ef(0),f(2017)<e2017f(0) | D. | f(1)<ef(0),f(2017)<e2017f(0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2x-y=0 | B. | 2x-y-2=0 | C. | x+2y-3=0 | D. | x-2y+3=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 60° | C. | 120° | D. | 150° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
使用年限x(年) | 2 | 3 | 4 | 5 | 6 |
維修費用y(萬元) | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 2 | C. | $\frac{3}{2}$ | D. | $\frac{\sqrt{17}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com