12.集合A={x|x2-2x<0},B={x|x-2<0},則( 。
A.A∩B=∅B.A∩B=AC.A∪B=AD.A∪B=R

分析 解不等式得集合A、B,根據(jù)交集與并集的定義判斷即可.

解答 解:集合A={x|x2-2x<0}={x|0<x<2},
B={x|x-2<0}={x|x<2},
∴A∩B={x|0<x<2}=A.
故選:B.

點(diǎn)評 本題考查了解不等式與集合的運(yùn)算問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.當(dāng)x≠1且x≠0時(shí),數(shù)列{nxn-1}的前n項(xiàng)和Sn=1+2x+3x2+…nxn-1(n∈N*)可以用數(shù)列求和的“錯位相減法”求得,也可以由x+x2+x3+…+xn(n∈N*)按等比數(shù)列的求和公式,先求得x+x2+x3+…+xn=$\frac{x-{x}^{n+1}}{1-x}$,兩邊都是關(guān)于x的函數(shù),兩邊同時(shí)求導(dǎo),(x+x2+x3+…+xn)′=($\frac{x-{x}^{n+1}}{1-x}$)′,從而得到:Sn=1+2x+3x2+…+nxn-1=$\frac{1-(n+1){x}^{n}+n{x}^{n+1}}{(1-x)^{2}}$,按照同樣的方法,請從二項(xiàng)展開式(1+x)n=1+${C}_{n}^{1}$x+C${\;}_{n}^{2}$x2+…+C${\;}_{n}^{n}$xn出發(fā),可以求得,Sn=1×2×C${\;}_{n}^{1}$+2×3×C${\;}_{n}^{2}$+3×4×C${\;}_{n}^{3}$+…+n×(n+1)×C${\;}_{n}^{n}$(n≥4)的和為n(n+3)2n-2(請?zhí)顚懽詈喗Y(jié)果)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)復(fù)數(shù)z滿足(1-i)z=|1+$\sqrt{3}i}$|(i為虛數(shù)單位),則$\overline z$在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在△ABC中,角A,B,C的對邊分別為a,b,c,且b=c,2sinB=$\sqrt{3}$sinA.
(Ⅰ)求cosB的值;
(Ⅱ)若a=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)函數(shù)g(x)=ex+3x-a(a∈R,e為自然對數(shù)底數(shù)),若存在x0∈(-∞,1],使g(g(x0))=x0,則實(shí)數(shù)a的取值范圍為(  )
A.(-∞,$\sqrt{e}$+$\frac{1}{2}$]B.(-∞,e+2]C.(-∞,e+$\frac{1}{2}$]D.(-∞,$\sqrt{e}$+2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若a3+a5=4,S15=60則a20=( 。
A.4B.6C.10D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=|x+1-2a|+|x-a2|,a∈R.
(Ⅰ)若f(a)≤2|1-a|,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若關(guān)于x的不等式f(x)≤1存在實(shí)數(shù)解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知雙曲線x2-$\frac{{y}^{2}}{^{2}}$=1(b>0)的離心率為$\sqrt{2}$,則雙曲線的漸近線的夾角為(  )
A.60°B.45°C.75°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在邊長為2的正方形ABCD內(nèi)部取一點(diǎn)M,則滿足∠AMB為銳角的概率是( 。
A.$\frac{π}{4}$B.$\frac{π}{8}$C.$1-\frac{π}{4}$D.$1-\frac{π}{8}$

查看答案和解析>>

同步練習(xí)冊答案